48LC

WeatherExpert[®] Series Single Package Rooftop Gas Heat/Electric Cooling Unit with Puron[®] (R–410A) Refrigerant Sizes: 14, 17, 20, 24, 26

Installation Instructions

NOTE: Read the entire instruction manual before starting the installation.

TABLE OF CONTENTS

SAFETY CONSIDERATIONS	. 2
Rated Indoor Airflow (cfm)	. 4
INSTALLATION	15
Jobsite Survey	15
Step 1 - Plan for Unit Location	15
Roof Mount	15
Step 2 - Plan for Sequence of Unit Installation	15
Curb-Mounted Installation	15
Pad-Mounted Installation	15
Frame-Mounted Installation	15
Step 3 - Inspect Unit	15
Step 4 - Provide Unit Support	16
Roof Curb Mount	16
Slab Mount (Horizontal Units Only)	16
Alternate Unit Support	
(In Lieu of Curb or Slab Mount)	
Step 5 - Field Fabricate Ductwork	
Step 6 - Rig and Place Unit	
Positioning on Curb	
Step 7 - Horizontal Duct Connection	21
Step 8 - Install Outside Air Hood — Factory Option	21
Step 9 - Install Flue Hood and Combustion Air Hood .	
Step 10 - Install Gas Piping	23
Gas Supply Line	23
Factory-Option Thru-Base Connections	24
Step 11 - Install External Condensate Trap and Line	25
Step 12 - Make Electrical Connections	25
Field Power Supply	25
Units Without Factory-Installed Non-Fused Disconnect or HACR	32
Units With Factory-Installed Non-Fused Disconnect or HACR	32
All Units	33
Convenience Outlets	33

HACR	34
Factory-Option Thru-Base Connections	35
Units Without Thru-Base Connections	35
Field Control Wiring	35
Thermostat	35
Unit Without Thru-Base Conversion Kit	35
Heat Anticipator Settings	36
Transformer Connection for 208-v Power Supply	36
RTU Open Controller (Factory-Installed Option)	36
SystemVu ^{TM} Controller (Factory-Installed Option)	36
Humidi-MiZer [®] System Control Connections	37
Humidi-MiZer System - Space RH Controller	37
Integrated Staging Control (ISC) Board	38
ISC Board — Sequence of Operation	38
General	38
Ventilation	38
Cooling	39
Humidi-MiZer System (Optional)	39
Economizer (Optional)	39
Low Ambient Cooling Operation	
Down to 40° F (4° C)	
Heating	
EconoMi\$er [®] X (Factory-Installed Option)	
Unit Installation	
Enthalpy Sensor Relocation	41
W7220 Economizer Controller	41
User Interface	41
Keypad	41
Menu Structure	42
Connections and Applications	46
W7220 Economizer Module Wiring	46
Economizer Controlled Configurations	47
Enthalpy Changeover Control	47
Enthalpy Settings	47
Demand Controlled Ventilation	49
Economizer Occupancy Control	50

Hardware	51
Actuators	51
Supply Air Temperature Sensor	51
Outside Air Temperature Sensor	51
Enthalpy Control Sensor Configuration	51
Operating Sequences	52
Staged Air Volume (3-Speed) Fan Motor	52
W7220 Economizer Control	52
Base Unit Controls	52
Cooling, Unit With EconoMi\$er [®] X Without CO ₂ Sensor	52
Heating With EconoMi\$er X	54
Demand Controlled Ventilation	55
Setup and Configuration	55
Initial Menu Display	55
Time-out and Screensaver	55
Checkout	55
Status	56
Calibration of Sensors	56
Resetting All Defaults	56
Troubleshooting	56
Power Up Delay	56
Power Loss (Outage or Brownout)	56
Alarms	56
Clearing Alarms	56
Control Set Point and Configuration Log	59
Staged Air Volume (SAV™)	
with Variable Frequency Drive	62
Multi-Speed VFD Display Kit (Field-Installed Accessory)	63
Connecting the Keypad to the VFD	63
Program the VFD for 3 Discrete Indoor Fan Speeds	64
Smoke Detectors	80
Return Air Sensor Tube Installation	80
Smoke Detector Test Magnet	80
Additional Application Data	80
Step 13 - Install Accessories	80
Step 14 - Check Belt Tension	81
UNIT START-UP CHECKLIST	83

SAFETY CONSIDERATIONS

Improper installation, adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical shock or other conditions which may cause personal injury or property damage. Consult a qualified installer, service agency, or your distributor or branch for information or assistance. The qualified installer or agency must use factory-authorized kits or accessories when modifying this product. Refer to the individual instructions packaged with the kits or accessories when installing.

Follow all safety codes. Wear safety glasses and work gloves. Use quenching cloths for brazing operations and have a fire extinguisher available. Read these instructions thoroughly and follow all warnings or cautions attached to the unit. Consult local building codes and appropriate national electrical codes (in USA, ANSI/NFPA 70, National Electrical Code (NEC); in Canada, CSA C22.1) for special requirements.

It is important to recognize safety information. This is the safety-alert symbol \triangle . When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, CAUTION, and NOTE. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which **will** result in severe personal injury or death. WARNING signifies hazards which **could** result in personal injury or death. CAUTION is used to identify unsafe practices, which **may** result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which **will** result in enhanced installation, reliability, or operation.

A WARNING

FIRE, EXPLOSION HAZARD

Failure to follow this warning could result in personal injury or death.

Disconnect gas piping from unit when leak testing at pressure greater than 0.5 psig (3450 Pa). Pressures greater than 0.5 psig (3450 Pa) will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than 0.5 psig (3450 Pa), it must be replaced before use. When pressure testing field-supplied gas piping at pressures of 0.5 psig (3450 Pa) or less, a unit connected to such piping must be isolated by closing the manual gas valve.

WARNING

FIRE HAZARD

A

Failure to follow this warning could result in personal injury, death, and/or property damage.

Inlet pressure tab set screw must be tightened and 1/8 in. NPT pipe plug must be installed to prevent gas leaks.

WARNING

FIRE HAZARD

A

Â

Failure to follow this warning could result in personal injury, death, and/or property damage.

Manifold pressure tap set screw must be tightened and 1/8 in. NPT pipe plug must be installed to prevent gas leak.

WARNING

CARBON-MONOXIDE POISONING HAZARD

Failure to follow instructions could result in severe personal injury or death due to carbon-monoxide poisoning, if combustion products infiltrate into the building.

Check that all openings in the outside wall around the vent (and air intake) pipe(s) are sealed to prevent infiltration of combustion products into the building.

Check that furnace vent (and air intake) terminal(s) are not obstructed in any way during all seasons.

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could cause personal injury or death.

Before performing service or maintenance operations on unit, always turn off main power switch to unit and install lock(s) and lockout tag(s). Unit may have more than one power switch.

WARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could cause personal injury, death and/or equipment damage.

Puron[®] (R-410A) refrigerant systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on Puron refrigerant equipment.

WARNING

PERSONAL INJURY AND ENVIRONMENTAL HAZARD

Failure to follow this warning could cause personal injury or death.

Relieve pressure and recover all refrigerant before system repair or final unit disposal.

Ware safety glasses and gloves when handling refrigerants. Keep torches and other ignition sources away from refrigerants and oils.

A CAUTION

CUT HAZARD

Â

Failure to follow this caution may result in personal injury.

Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts and servicing air conditioning equipment.

3

Rated Indoor Airflow (cfm)

The table to the right lists the rated indoor airflow used for the AHRI efficiency rating for the units covered in this document.

Model Number	Full Load Airflow (cfm)
48LC**14	4375
48LC**17	4875
48LC**20	5690
48LC**24	6500
48LC**26	7500

Position:	1	2	3	4	5	6	7	8	9	10) 1	11	12	13	3 1	4	15	16	3 1	17	18]
Example:	4	8	L	C		0	2	4	A	1	_	A	5	-	-	D	A	0	-	A	0	-
Unit Heat Type 48 - Gas Heat Packaged Roc Model Series - WeatherExp											-											Packaging 0 = Standard 1 = LTL
LC - Ultra High Efficiency Heat Options D = Low Gas Heat E = Medium Gas Heat F = High Gas Heat S = Low Heat w/ Stainless S R = Medium Heat w/ Stainless T = High Heat w/ Stainless	ss S	teel	Exch	ange	۶r														0 1 2	er\ = =	4 = 3 = 2 = Nor Unp Pov	trical Options None HACR Circuit Breaker Non-Fused Disconnect Options ne bowered Convenience Outlet wered Convenience Outlet ged Panels
Refrig. Systems Options 0 = Three stage cooling cap A = Three stage cooling cap and Humidi-MiZer® syst	acit																		4	=	Hin Unp Hin	ged Panels and powered Convenience Outlet ged Panels and vered Convenience Outlet
Cooling Tons 14 - 12.5 ton 17 - 15 ton 20 - 17.5 ton 24 - 20 ton 26 - 23 ton																		A = B = C =	= N = T = T C	lor en ar en	e iper ome iper trifu	aust Options ature Standard Leak Economizer with atric Relief ature Standard Leak Economizer with gal Power Exhaust - Vertical Only y Standard Leak Economizer with
Sensor Options A = None B = RA Smoke Detector C = SA Smoke Detector D = RA + SA Smoke Detector $E = CO_2$ F = RA Smoke Detector and $G = SA Smoke Detector andH = RA + SA Smoke Detector$	1 CC 1 CO) ₂	O ₂															N = P = R =	= E = T = T = E = E = E	intl ien ien ien intl intl intl	nalp trifu per pre per Ce nalp ome	tric Relief y Standard Leak Economizer with Igal Power Exhaust - Vertical Only ature Ultra Low Leak Economizer with tric Relief ature Ultra Low Leak Economizer ntrifugal Power Exhaust - Vertical Only y Ultra Low Leak Economizer with tric Relief y Ultra Low Leak Economizer with gal Power Exhaust - Vertical Only
Indoor Fan Motor Options 1 = Standard Static / Vertical 2 = Medium Static / Vertical Su 3 = High Static / Vertical Su 4 = Ultra High Static / Vertical 5 = Standard Static / Horizon 6 = Medium Static / Horizon 7 = High Static / Horizontal 8 = Ultra High Static / Horizon	Sup pply al S ntal tal S Supp	pply, , Re uppl Sup Supp ply, I	Retu turn y, Re ply, l ly, R Retu	urn A Air F eturn Retur eturr rn Ai	ir Flo low Air F n Air N Air I r Flov	Flow Flow Flov Flov	w w									0 1 4 esi) = = = gn	Ele R1 Sy Re	Unit ectr FU vste	c op m	onti mec en l /u™	rols hanical Controls Multi-Protocol Controller Controller Revision
Coil Options: Fin/Tube (Co A = AI/Cu - AI/Cu B = Precoat AI/Cu - AI/Cu C = E-coat AI/Cu - AI/Cu D = E-coat AI/Cu - E-coat AI $E = Cu/Cu - AI/CuF = Cu/Cu - Cu/CuM = AI/Cu - AI/Cu - Louvered N = Precoat AI/Cu - AI/Cu - PP = E-coat AI/Cu - AI/Cu - QR = Cu/Cu - AI/Cu - Louvered R = Cu/Cu - AI/Cu - LouveredR = Cu/Cu - AI/Cu - LouveredR = Cu/Cu - Cu/Cu - Louvered$	/Cu ed Ha - Lou Louv /Cu red I	ail G uver vere — L Hail	iuard ed H d Ha ouve Guai	ail G il Gu ered I rd	uard ard			Guar	d)					1 = 5 =	ltag = 57 = 20 = 40	75/ 08-	230)/3/	60			

a48-9335

Fig. 1 - 48LC 14-26 Model Number Nomenclature (Example)

Fig. 2 - Unit Dimensional Drawing – 14 Size Unit, Sheet 1 of 3

Fig. 2 (cont) - Unit Dimensional Drawing - 14 Size Unit, Sheet 2 of 3

Fig. 2 (cont) - Unit Dimensional Drawing – 14 Size Unit, Sheet 3 of 3

Fig. 3 - Unit Dimensional Drawing - 17 and 20 Size Units, Sheet 1 of 3

Fig. 3 (cont) - Unit Dimensional Drawing – 17 and 20 Size Units, Sheet 2 of 3

Fig. 3 (cont) - Unit Dimensional Drawing – 17 and 20 Size Units, Sheet 3 of 3

Fig. 4 - Unit Dimensional Drawing - 24 and 26 Size Units, Sheet 1 of 3

Fig. 4 (cont) - Unit Dimensional Drawing – 24 and 26 Size Units, Sheet 2 of 3

Fig. 4 (cont) - Unit Dimensional Drawing – 24 and 26 Size Units, Sheet 3 of 3

LOCATION	DIMENSION	CONDITION
А	36in (914 mm)	Recommended clearance for air flow and service
В	42in (1067 mm)	Recommended clearance for air flow and service
	18—in (457 mm)	 No Convenience Outlet No Economizer No field-installed disconnect on economizer hood side (Factory-installed disconnect installed).
С	36–in (914 mm)	 Convenience Outlet installed. Vertical surface behind servicer is electrically non-conductive (e.g.: wood, fiberglass).
	42-in (1067 mm)	 Convenience Outlet installed. Vertical surface behind servicer is electrically conductive (e.g.: metal, masonry).
	96-in (2438 mm)	 Economizer and/or Power Exhaust installed. Check for sources of flue products with 10 feet (3 meters) of economizer fresh air intake.
D	42in (1067 mm)	Recommended clearance for service.

NOTE: Unit not designed to have overhead obstruction. Contact Application Engineering for guidance on any application planning overhead obstruction or for vertical clearances.

Fig. 5 - Service Clearance Dimensional Drawing

Table 1 – Operating Weights

48LC**			UNIT LB (KG)		
40LC**	14	17	20	24	26
Base Unit	1853 (842.3)	2095 (952.3)	2201 (1000.7)	2347 (1067.0)	2492 (1132.6)
Economizer	246 (112)	246 (112)	246 (112)	246 (112)	246 (112)
Powered Outlet	35 (16)	35 (16)	35 (16)	35 (16)	35 (16)
Curb					
14-in/356 mm	240 (109)	240 (109)	255 (116)	255 (116)	273 (124)
24-in/610 mm	340 (154)	340 (154)	355 (161)	355 (161)	355 (161)

INSTALLATION

Jobsite Survey

Complete the following checks before installation.

- 1. Consult local building codes and the NEC (National Electrical Code) ANSI/NFPA 70 for special installation requirements.
- 2. Determine unit location (from project plans) or select unit location.
- 3. Check for possible overhead obstructions which may interfere with unit lifting or rigging.

Step 1 — Plan for Unit Location

Select a location for the unit and its support system (curb or other) that provides for the minimum clearances required for safety. This includes the clearance to combustible surfaces, unit performance and service access below, around and above unit as specified in unit drawings. See Fig. 5.

NOTE: Consider also the effect of adjacent units.

Be sure that the unit is installed such that snow will not block the combustion air intake or flute outlet.

Unit may be installed directly on wood flooring or on Class A, B, or C roof-covering material when roof curb is used.

Do not install unit in an indoor location. Do not locate air inlets near exhaust vents or other sources of contaminated air. For proper unit operation, adequate combustion and ventilation air must be provided in accordance with Section 5.3 (Air for Combustion and Ventilation) of the National Fuel Gas Code, ANSI Z223.1 (American National Standards Institute) and NFPA (National Fire Protection Association) 54 TIA--54--84--1. In Canada, installation must be in accordance with the CAN1--B149 installation codes for gas burning appliances.

Although unit is weatherproof, avoid locations that permit water from higher level runoff and overhangs to fall onto the unit.

Locate mechanical draft system flue assembly at least 4 ft (1.2 m) from any opening through which combustion products could enter the building, and at least 4 ft (1.2 m) from any adjacent building (or per local code). Locate the flue assembly at least 10 ft (3.05 m) from an adjacent unit's fresh air intake hood if within 3 ft (0.91 m) of same elevation (or per local code). When unit is located adjacent to public walkways, flue assembly must be at least 7 ft (2.1 m) above grade.

Select a unit mounting system that provides adequate height to allow installation of condensate trap per requirements. Refer to Step 11 — Install External Condensate Trap and Line for required trap dimensions.

Roof Mount —

Check building codes for weight distribution requirements. Unit operating weight is shown in Table 1.

Step 2 — Plan for Sequence of Unit Installation

The support method used for this unit will dictate different sequences for the steps of unit installation. For example, on curb-mounted units, some accessories must be installed on the unit before the unit is placed on the curb. Review the following for recommended sequences for installation steps.

Curb-mounted installation —

Install curb Install field-fabricated ductwork inside curb

Install thru-base service connection fittings (affects curb and unit) Rig and place unit Remove top skid Install outside air hood Install smoke detector tube Install combustion air hood Install flue hood Install gas piping

Install condensate line trap and piping

Make electrical connections

Install other accessories

Pad-mounted installation —

Prepare pad and unit supports Rig and place unit Remove duct covers and top skid Install smoke detector return air sensor tube Install field-fabricated ductwork at unit duct openings Install outside air hood Install combustion air hood Install flue hood Install gas piping

Install condensate line trap and piping Make electrical connections

Install other accessories

Frame-mounted installation —

Frame-mounted applications generally follow the sequence for a curb installation. Adapt as required to suit specific installation plan.

Step 3 — Inspect unit

Inspect unit for transportation damage. File any claim with transportation agency.

Confirm before installation of unit that voltage, amperage and circuit protection requirements listed on unit data plate agree with power supply provided.

On units with hinged panel option, check to be sure all latches are tight and in closed position.

Locate the carton containing the outside air hood parts; see Fig. 7 and 13. Do not remove carton until unit has been rigged and located in final position.

Step 4 — Provide Unit Support

Roof Curb Mount -

Accessory roof curb details and dimensions are shown in Fig. 8, 9 and 10. Assemble and install accessory roof curb in accordance with instructions shipped with the curb.

NOTE: The gasketing of the unit to the roof curb is critical for a watertight seal. Install gasket supplied with the roof curb as shown in Fig. 8, 9 and 10. Improperly applied gasket can also result in air leaks and poor unit performance.

Curb should be level. This is necessary for unit drain to function properly. Unit leveling tolerances are shown in Fig. 6. Refer to Accessory Roof Curb Installation Instructions for additional information as required.

Fig. 6 - Unit Leveling Tolerances

Install insulation, cant strips, roofing felt, and counter flashing as shown. *Ductwork must be attached to curb and not to the unit. Thru-the-base power connection must be installed before the unit is set on the roof curb.* If field-installed thru-the-roof curb gas connections are desired, remove knockout in basepan located in the gas section; see Fig. 7 for location. Gas connections and power connections to the unit must be field-installed after the unit is installed on the roof curb.

If electric and control wiring is to be routed through the basepan, remove knockouts in basepan located in control

box area of access panel; see Fig. 2, 3, or 4 for basepan knockout locations for location. Attach the service connections to the basepan.

Fig. 7 - Typical Access Panel and Compressor Locations

Slab Mount (Horizontal Units Only) -

Provide a level concrete slab that extends a minimum of 6–in. (150 mm) beyond unit cabinet. Install a gravel apron in front of condenser coil air inlet to prevent grass and foliage from obstructing airflow.

NOTE: Horizontal units may be installed on a roof curb if required.

Alternate Unit Support (In Lieu of Curb or Slab Mount) —

A non-combustible sleeper rail can be used in the unit curb support area. If sleeper rails cannot be used, support the long sides of the unit with a minimum of 4 equally spaced 4-in. x 4-in. (102 mm x 102 mm) pads on each side. Locate pads so that they support the rails. Make sure to avoid the fork openings.

UNIT SIZE

" A "

ROOF CURB ACCESSORY

Fig. 8 - Roof Curb Details - 14 Size Unit

17

NOTES: 1 ROOF CURB ACCESSORY IS SHIPPED UNASSEMBLED. 2 DIMENSIONS IN [] ARE IN MILLIMETERS. 11'-3-11/16" [3445.7] (OUTSIDE) ROOF CURB GALVANIZED STEEL. 2'-3-7/8" [708.4] (INSIDE) ATTACH DUCTWORK TO CURB (FLANGES ON DUCT REST ON CURB) FRONT 5 SERVICE CLEARANCE 4 ft ON EACH SIDE 1'-2-7/8" [377.5] SUPPLY AIR OPENING BACK DIRECTION OF AIR FLOW ALT GAS 0'-2-3/4 Ø[70.0] 0'-4-5/16" [110.2] REF 0'-3" [76.2] REF AT (2) PLCS 0′-3-3/4" [95.6] 0'-7/16 [10.4] 4'-2" [1269.5] BACK 3'-11-5/8" [1209.3] ł ROOF CURB RETURN AIR OPENING 2'-0-1/16" [611.1] REF RETURN END 0'-1/4" _____28° ____ -OPENING FOR ELECTRICAL SERVICE 1'-10-1/4" [563.5] (INSIDE) 0′-1-7/8" [47.6] TYP 0′-2-15/16" [75.0] Ŧ ROOF CURB 0'-6-1/4" [161.5] — 6'-8-5/8" [2047.8] (OUTSIDE) MAX CURB LEVELING TOLERANCES GASKET (SUPPLIED WITH CURB) NAIL 0'-7/16" [11] COUNTER FLASHING (FIELD SUPPLIED) - ROOFING FELT (FIELD SUPPLIED) - CANT STRIP (FIELD SUPPLIED) - ROOFING MATERIAL (FIELD SUPPLIED) 0 0 RIGID INSULATION (FIELD SUPPLIED) SUPPLY RETURN AIR 1'-7-1/4 [489.0] 2'-4-1/4" [717.5] 2'-1-1/2" [649.2] — TYPICAL 4 SIDES -SEE DETAIL A SEE DETAIL B-1 ([] IJ " A " 1 0′-0-5/16" [7.4] 0′-0-1/4" [6.2] ALL FLANGES 1-1/4" [31] -9-1/2" [546] 2'-3-1/4" [692] 5'-8-3/4" [1746] 5'-3-1/4" [1606] DETAIL B SCALE 1:2 TYP BOTH ENDS INSULATED PANS (MINIMUM 18 GAUGE STEEL) WITH 1/2 INCH NEOPRENE INSULATION DETAIL A SCALE 1:2 TYP FRONT AND BACK RETURN SUPPL AIR OPENING FOR -ALT GAS SERVICE INSULATED PANS (MINIMUM 18 GAUGE STEEL) WITH 1/2 INCH NEOPRENE INSULATION

ROOF CURB ACCESSORY

CRRFCURB047A00 CRRFCURB048A00

UNIT SIZE

17, 20

"A" 1'-2" [356.0] 2'-0" [610.0]

C13055

Fig. 10 - Roof Curb Details - 24 and 26 Size Units

Step 5 — Field Fabricate Ductwork

Cabinet return-air static pressure (a negative condition) shall not exceed 0.5 in. wg (87 Pa) with economizer or without economizer.

For vertical ducted applications, secure all ducts to roof curb and building structure. *Do not connect ductwork to unit.*

Fabricate supply ductwork so that the cross sectional dimensions are equal to or greater than the unit supply duct opening dimensions for the first 18 in. (458 mm) of duct length from the unit basepan.

Insulate and weatherproof all external ductwork, joints, and roof openings with counter flashing and mastic in accordance with applicable codes.

Ducts passing through unconditioned spaces must be insulated and covered with a vapor barrier.

If a plenum return is used on a vertical unit, the return should be ducted through the roof deck to comply with applicable fire codes.

A minimum clearance is not required around ductwork.

CAUTION

PROPERTY DAMAGE HAZARD

A

Failure to follow this caution may result in damage to roofing materials.

Membrane roofs can be cut by sharp sheet metal edges. Be careful when placing any sheet metal parts on such roof.

Step 6 — Rig and Place Unit

Keep unit upright and do not drop. Spreader bars are not required if top crating is left on unit. Rollers may be used to move unit across a roof. Level by using unit frame as a reference. See Table 1 (on page 14) and Fig. 11 (below) for additional information.

Lifting holes are provided in base rails as shown in Fig. 11. Refer to rigging instructions on unit.

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage.

All panels must be in place when rigging. Unit is not designed for handling by fork truck when packaging is removed.

Before setting the unit onto the curb, recheck gasketing on curb.

C091	07
0001	

			DIMENSIONS							
UNIT	MAX W	MAX WEIGHT A B		Α		3	С			
	LB	KG	IN	ММ	IN	ММ	IN	ММ		
48LC**14	2135	970	127.8	3249	59.1	1501	52.3	1328		
48LC**17	2377	1080	141.5	3595	65.5	1664	60.3	1532		
48LC**20	2483	1129	141.5	3595	65.5	1664	60.3	1532		
48LC**24	2629	1195	157.8	4007	72.8	1849	60.3	1532		
48LC**26	2774	1261	157.8	4007	7208	1849	60.3	1532		

NOTES:

1. Dimensions in () are inches.

2. Hook rigging shackles through holes in base rail, as shown in detail "A." Holes in base rails are centered around the unit center of gravity. Use wooden top to prevent rigging straps from damaging unit.

Fig. 11 - Rigging Details

Positioning on Curb —

Position unit on roof curb so that the following clearances are maintained: 1/4 in. (6 mm) clearance between the roof curb and the base rail inside the right and left, 1/2 in. (12 mm) clearance between the roof curb and the base rail inside the front and back. This will result in the distance between the roof curb and the base rail inside on the condenser end of the unit being approximately equal to Details A and B in Fig. 8, 9 and 10.

Do not attempt to slide unit on curb after unit is set. Doing so will result in damage to the roof curb seal.

Although unit is weatherproof, guard against water from higher level runoff and overhangs.

Flue vent discharge must have a minimum horizontal clearance of 48 in. (1220 mm) from electric and gas meters, gas regulators, and gas relief equipment. Minimum distance between unit and other electrically live parts is 48 inches (1220 mm).

Flue gas can deteriorate building materials. Orient unit such that flue gas will not affect building materials. Locate mechanical draft system flue assembly at least 48 in. (1220 mm) from an adjacent building or combustible material.

After unit is in position, remove rigging skids and shipping materials.

Step 7 — Horizontal Duct Connection

Refer to Fig. 2, 3 and 4 for locations and sizes of the horizontal duct connections. Note that there are two different return air duct connection locations – one for unit without an economizer (on back side of unit) and a different one for unit equipped with an economizer (on left end, under the economizer hood). The supply air duct connection is on the back side. See Fig. 12 for top view depicting typical horizontal duct arrangements.

Fig. 12 - Horizontal Duct Opening Dimensions

Field-supplied ⁽³/₄-inch) flanges should be attached to horizontal duct openings (see Fig. 12) and all ductwork should be secured to the flanges. Insulate and weatherproof all external ductwork, joints, and roof or building openings with counter flashing and mastic in accordance with applicable codes.

Step 8 — Install Outside Air Hood — Factory Option

The outside air hood for factory-option economizer is shipped in knock-down form and requires field assembly. The panel for the hood top is shipped on the end of the unit (see Fig. 13). The remaining parts for the hood assembly (including side panels, filters and tracks) are shipped in a carton that is secured to the rear of the blower assembly. Access the carton location through rear panel (see Fig. 14).

Fig. 13 - Hood Top - Shipping Position

To remove the hood parts package:

- 1. Remove the back blower access panel.
- 2. Locate and cut the strap, being careful to not damage any wiring.
- 3. Carefully lift the hood package carton through the back blower access opening.

See Fig. 15 for identification of the various parts of the hood assembly.

Fig. 14 - Hood Package – Shipping Location

To assemble the outside air hood:

- 1. Remove hood top panel from shipping position on unit end.
- 2. Install four angles to the upper end panel using the screws provided.
- 3. Apply seal strip to mating flanges on the side plates of the hood (see Fig. 15).

Fig. 15 - Hood Part Identification and Seal Strip Application Areas

- 4. Secure side plates to panel using the screws provided.
- 5. Apply seal strip to mating flange of the hood (see Fig. 15).
- 6. Secure top flange using screws provided in kit.
- 7. Install outdoor air screens by sliding them into the channel formed by the four angles installed in step 2. Make sure that the screens extend across the entire length of the hood.
- 8. Install side filter supports using the screws provided.
- 9. Install side drip angles using the screws provided.
- 10. Run a continuous length of seal strip across the hood covering the engagement holes in the lower hood.
- 11. Install top diverter using the screws provided.
- 12. On units with barometric relief, remove screws at bottom of relief damper. **Do not discard damper door**.

Fig. 16 - Hood Assembly - Completed

Step 9 — Install Flue Hood and Combustion Air Hood

The flue hood is shipped screwed to the fan deck inside the burner compartment. Remove the burner access panel and then remove the flue hood from its shipping location. Using the screws provided, install flue hood in the location shown in Fig. 17.

The combustion air hood is attached to the back of the burner access panel. Remove the two screws securing the hood to the back of the burner access panel. Using the two screws, re-attach the hood to the front of the burner access panel as shown in Fig. 17.

Fig. 17 - Flue Hood and Combustion Air Hood Details

Step 10 — Install Gas Piping

Installation of the gas piping must be in accordance with local building codes and with applicable national codes. In U.S.A., refer to NFPA 54/ANSI Z223.1 National Fuel Gas Code (NFGC). In Canada, installation must be accordance with the CAN/CSA B149.1 and CAN/CSA B149.2 installation codes for gas burning appliances.

This unit is factory equipped for use with Natural Gas fuel at elevations up to 2000 ft (610 m) above sea level. Unit may be field converted for operation at elevations above 2000 ft (610 m) and/or for use with liquefied petroleum fuel. See accessory kit installation instructions regarding these accessories.

NOTE: Furnace gas input rate on rating plate is for installation up to 2000 ft (610 m) above sea level. In U.S.A. the input rating for altitudes above 2000 ft (610 m) must be derated by 4% for each 1000 ft (305 m) above sea level.

For natural gas applications, gas pressure at unit gas connection must not be less than 5 in. wg (1246 Pa) or greater than 13 in. wg (3240 Pa) while the unit is operating. For liquified petroleum applications, the gas pressure must not be less than 11 in. wg (2740 Pa) or greater than 13 in. wg (3240 Pa) at the unit connection.

Gas Supply Line -

The gas supply pipe enters the unit adjacent to the burner access panel on the front side of the unit, through the grommeted hole. The gas connection to the unit is made to the $^{3}/_{4}$ in. FPT gas inlet port on the unit gas valve.

Table 2 lists typical $\frac{3}{4}$ inch NPT (National Pipe Thread) field supplied pipe fittings required for Thru-Base gas supply, starting from the unit gas valve (see Fig. 18).

Fig. 18 - Gas Supply Line Piping with Thru-Base

Table 2 – Typical ³/₄-in. NPT Field Supplied Piping Parts

•	
Qty	Description
1	90 Deg Street Elbow
1	5 Inch Long Nipple
1	Ground-Joint Union
1	3 Inch Long Nipple
1	90 Deg Elbow
1	12 Inch Long Nipple
1	90 Deg Elbow
1	3 Inch Long Nipple
1	TEE
1	4 Inch Long Nipple (Sediment Trap)
1	Сар
1	3 ¹ / ₂ Inch Long Nipple
1	NIBCO* Ball Valve (GB30)
1	8 Inch Long Nipple
1	90 Deg Elbow
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Pipe gas supply into 90 degree elbow item 15 (see Table 2) through the hole in the unit basepan.

For typical ${}^{3}/_{4}$ inch NPT field supplied fittings required for NON Thru-Base gas supply starting from the unit gas valve, omit items 14 and 15 from Table 2 and pipe gas supply into TEE. See Fig. 19.

Fig. 19 - Gas Supply Line Piping

Table 3 – Natural Gas Supply Line Pressure Ranges

			-
UNIT MODEL	UNIT SIZE	MIN	MAX
48LC**	14, 17, 20, 24, 26	5.0 in. wg (1246 Pa)	13.0 in. wg (3240 Pa)

Tuble i Elquid I topune Supply Elne I tessure Runges	Table 4 – Liquid	Propane Supply	Line Pressure Ranges
--	------------------	-----------------------	-----------------------------

UNIT MODEL	UNIT SIZE	MIN	MAX
48LC**	14, 17, 20, 24, 26	11.0 in. wg (2740 Pa)	13.0 in. wg (3240 Pa)

Manifold pressure is factory-adjusted for natural gas (NG) fuel use. Adjust as required to obtain best flame characteristics.

Table 5 – Natural Gas Manifold Pressure Ranges

UNIT MODEL	UNIT SIZE	HIGH FIRE	LOW FIRE
48LC**	14, 17, 20, 24, 26	3.0 in. wg (747 Pa)	2.0 in. Wg (498 Pa)

* NIBCO is a registered trademark of NIBCO Inc.

Manifold pressure for liquid propane (LP) fuel must be adjusted to specified range. Follow instructions in the accessory kit to make initial readjustment.

UNIT MODEL	UNIT SIZE	HIGH FIRE	LOW FIRE	
48LC**	14, 17, 20, 24, 26	11.0 in. wg 7.3 in. W (2740 Pa) (1818 Pa		
48LCS*	14 only	9.8 in. wg (2441 Pa)	6.5 in. Wg (1619 Pa)	

Table 6 – Liquid Propane Manifold Pressure Ranges

CAUTION

EQUIPMENT DAMAGE HAZARD

Failure to follow this caution may result in damage to equipment.

When connecting the gas line to the unit gas valve, the installer MUST use a backup wrench to prevent damage to the valve.

Install a gas supply line that runs to the unit heating section. Refer to the NFPA 54/NFGC or equivalent code for gas pipe sizing data. Do not use a pipe smaller than the size specified. Size the gas supply line to allow for a maximum pressure drop of 0.5-in. wg (124 Pa) between gas regulator source and unit gas valve connection when unit is operating at high-fire flow rate.

The gas supply line can approach the unit in two ways: horizontally from outside the unit (across the roof), or through unit basepan. Observe clearance to gas line components per Fig. 20.

Fig. 20 - Gas Piping Guide

Factory-Option Thru-Base Connections —

Electrical Connections: Knockouts are located in the control box area. Remove the appropriate size knockout for high voltage connection. Use the field supplied connector depending on wiring or conduit being utilized. Remove the 7/8-in. (22mm) knockout and appropriate

connector for low voltage wiring. If non-unit powered convenience outlet is being utilized, remove the $7/_8$ -in. (22mm) knockout and utilize appropriate connector for 115 volt line. See "Step 12 — Make Electrical Connections" for details.

Gas Connections: Remove the knockout in the base pan and route ³/₄-in. gas line up through the opening. Install an elbow and route gas line through opening in panel after first removing plastic bushing. Install a gas shut off followed by a drip leg and ground-joint union. Route gas line into gas section through the grommet (Part #: KA56SL112) at the gas inlet and into the gas valve. See Fig. 18 and Table 2. If a regulator is installed, it must be located 4 feet (1.22 meters) from the flue outlet.

Some municipal codes require that the manual shutoff valve be located upstream of the sediment trap. See Fig. 19 for typical piping arrangements for gas piping that has been routed through the sidewall of the base pan.

When installing the gas supply line, observe local codes pertaining to gas pipe installations. Refer to the NFPA 54/ANSI Z223.1 NFGC latest edition (in Canada, CAN/CSA B149.1). In the absence of local building codes, adhere to the following pertinent recommendations:

- 1. Avoid low spots in long runs of pipe. Grade all pipe 1/4-in. in every 15 ft (7 mm in every 5 m) to prevent traps. Grade all horizontal runs downward to risers. Use risers to connect to heating section and to meter.
- 2. Protect all segments of piping system against physical and thermal damage. Support all piping with appropriate straps, hangers, etc. Use a minimum of one hanger every 6 ft (1.8 m). For pipe sizes larger than 1/2-in., follow recommendations of national codes.
- 3. Apply joint compound (pipe dope) sparingly and only to male threads of joint when making pipe connections. Use only pipe dope that is resistant to action of liquefied petroleum gases as specified by local and/or national codes. If using PTFE (Teflon*) tape, ensure the material is Double Density type and is labeled for use on gas lines. Apply tape per manufacturer's instructions.
- Pressure-test all gas piping in accordance with local and national plumbing and gas codes before connecting piping to unit.

NOTE: Pressure test the gas supply system after the gas supply piping is connected to the gas valve. The supply piping must be disconnected from the gas valve during the testing of the piping systems when test pressure is in excess of 0.5 psig (3450 Pa). Pressure test the gas supply piping system at pressures equal to or less than 0.5 psig (3450 Pa). The unit heating section must be isolated from the gas piping system by closing the external main manual shutoff valve and slightly opening the ground-joint union.

Check for gas leaks at the field-installed and factory-installed gas lines after all piping connections have been completed. Use soap-and-water solution (or method specified by local codes and/or regulations).

* Teflon is a registered trademark of DuPont.

WARNING

FIRE OR EXPLOSION HAZARD

A

Failure to follow this warning could result in personal injury, death and/or property damage.

- Connect gas pipe to unit using a backup wrench to avoid damaging gas controls.
- Never purge a gas line into a combustion chamber.
- Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections.
- Use proper length of pipe to avoid stress on gas control manifold.

NOTE: If orifice hole appears damaged or it is suspected to have been redrilled, check orifice hole with a numbered drill bit of correct size. Never redrill an orifice. A burr-free and squarely aligned orifice hole is essential for proper flame characteristics.

Fig. 21 - Orifice Hole

Step 11 — Install External Condensate Trap and Line

The unit has one 3/4-in. condensate drain connection on the end of the condensate pan (see Fig. 22). See Fig. 2, 3 and 4, item "E", in the view labeled "BACK (HORIZONTAL DISCHARGE)" (located on sheet 2 of 3 of each figure) for the location of the condensate drain connection.

Fig. 22 - Condensate Drain Pan Connection

The piping for the condensate drain and external trap can be completed after the unit is in place. Hand tighten fittings to the drain pan fitting. Provide adequate support for the drain line. Failure to do so can result in damage to the drain pan. See Fig. 23.

NOTE: Trap should be deep enough to offset maximum unit static difference. A 4" (102mm) trap is recommended.

C11291

Fig. 23 - Condensate Drain Piping Details

All units must have an external trap for condensate drainage. Install a trap at least 4-in. (102 mm) deep and protect against freeze-up. If drain line is installed downstream from the external trap, pitch the line away from the unit at 1-in. per 10 ft (25 mm in 3 m) of run. Do not use a pipe size smaller than the unit connection $(^{3}/_{4}$ -in.).

Step 12 — Make Electrical Connections

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Do not use gas piping as an electrical ground. Unit cabinet must have an uninterrupted, unbroken electrical ground to minimize the possibility of personal injury if an electrical fault should occur. This ground may consist of electrical wire connected to unit ground lug in control compartment, or conduit approved for electrical ground when installed in accordance with NEC (National Electrical Code); ANSI/NFPA 70, latest edition (in Canada, Canadian Electrical Code CSA [Canadian Standards Association] C22.1), and local electrical codes.

NOTE: Field-supplied wiring shall conform with the limitations of minimum $63^{\circ}F(33^{\circ}C)$ rise.

Field Power Supply -

If equipped with optional Powered Convenience Outlet: The power source leads to the convenience outlet's transformer primary are not factory connected. Installer must connect these leads according to required operation of the convenience outlet. If an always-energized convenience outlet operation is desired, connect the source leads to the line side of the unit-mounted disconnect. (Check with local codes to ensure this method is acceptable in your area.) If a de-energize via unit disconnect switch operation of the convenience outlet is desired, connect the source leads to the load side of the unit disconnect. On a unit without a unit-mounted disconnect or HACR, connect the source leads to the terminal block with unit field power leads. See Fig. 24.

Field power wires are connected to the unit at line-side pressure lugs on the terminal block (see wiring diagram label for control box component arrangement) or at factory-installed option non-fused disconnect switch or HACR breaker. Use copper conductors only.

NOTE: Make field power connections directly to line connection pressure lugs only.

FIRE HAZARD

Failure to follow this warning could result in intermittent operation or unsatisfactory performance.

Do not connect aluminum wire between disconnect switch and air conditioning unit. Use only copper wire. (See Fig. 25.)

Fig. 25 - Disconnect Switch and Unit

A93033

Fig. 26 - 48LC 14-26 Electro-mechanical Control Wiring Diagram

Fig. 27 - 48LC 14-26 RTU Open Control Wiring Diagram

Fig. 28 - 48LC 14-26 SystemVu[™] Control Wiring Diagram

Fig. 29 - Typical Power Wiring Diagram, Electro-mechanical and RTU Open Controls, 48LC 14-20 208/230V Shown

C14112

50LC500886 A

a48-9339

Fig. 30 - Typical Power Wiring Diagram, SystemVu[™] Controls, 48LC 26 208/230V Shown

Units Without Factory-Installed Non-Fused Disconnect or HACR —

When installing units, provide a disconnect switch per NEC (National Electrical Code) of adequate size. Disconnect sizing data is provided on the unit informative plate. Locate on unit cabinet or within sight of the unit per national or local codes. Do not cover unit informative plate if mounting the disconnect on the unit cabinet.

Units With Factory-Installed Non-Fused Disconnect or HACR—

The factory-installed option non-fused disconnect switch (NFD) or HACR is located in the main control box. The manual switch handle and shaft are shipped in the control box and must be mounted on the corner post adjacent to the control box (see Fig. 31 or 32). Note that the tape covering the hole for the shaft in the corner post must be removed prior to handle and shaft installation.

To field install the NFD shaft and handle:

- 1. Open the control box panel.
- 2. Make sure the NFD shipped from the factory is at OFF position (the arrow on the black handle knob or on the silver metal collar is at OFF).
- 3. Insert the shaft with the cross pin on the top of the shaft in the horizontal position.
- 4. Measure the tip of the shaft to the outside surface of the corner post to be 0.88".
- 5. Tighten the locking screw to secure the shaft to the NFD.
- 6. Turn the handle to OFF position with red arrow pointing at OFF.
- 7. Install the handle on to the corner post vertically with the red arrow pointing up.
- 8. Secure the handle to the corner post with (2) screws and lock washers supplied.

To field install the HACR shaft and handle:

- 1. Open the control box panel.
- 2. Make sure the HACR shipped from the factory is at OFF position (the white arrow pointing at OFF).
- 3. Insert the shaft with the cross pin on the top of the shaft in the horizontal position.
- 4. Measure the tip of the shaft to the outside surface of the corner post to be 0.88".
- 5. Tighten the locking screw to secure the shaft to the HACR.
- 6. Turn the handle to OFF position with red arrow pointing at OFF.
- 7. Install the handle on to the corner post vertically with the red arrow pointing up.
- 8. Secure the handle to the corner post with (2) screws and lock washers supplied.

Fig. 31 - Handle and Shaft Assembly for NFD

Fig. 32 - Handle and Shaft Assembly for HACR

All Units -

All field wiring must comply with NEC and all local code requirements.

Size wire based on MCA (Minimum Circuit Amps) on the unit informative plate. See Fig. 33 for power wiring connections to the unit power terminal block and equipment ground. Maximum wire size is 2/0 AWG per pole.

Units Without Disconnect or HACR Option

Units With Disconnect or HACR Option

C12387

Fig. 33 - Power Wiring Connections

Provide a ground-fault and short-circuit over-current protection device (fuse or breaker) per NEC Article 440 (or local codes). Refer to unit informative data plate for MOCP (Maximum Over-current Protection) device size.

NOTE: Units ordered with factory-installed HACR do not need additional ground-fault and short circuit over current protection device unless required by local codes.

Voltage to compressor terminals during operation must be within voltage range indicated on unit nameplate. See Tables 26 and 27. On 3-phase units, voltages between phases must be balanced within 2% and the current within 10%. Use the formula shown in the legend for Tables 26 and 27 (see Note 3 on page 79) to determine the percent of voltage imbalance.

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage.

Operation on improper line voltage or excessive phase imbalance constitutes abuse and may cause damage to electrical components. Such operation would invalidate any applicable Carrier warranty.

Convenience Outlets —

ELECTRICAL OPERATION HAZARD

Failure to follow this warning could result in personal injury or death.

Units with convenience outlet circuits may use multiple disconnects. Check convenience outlet for power status before opening unit for service. Locate its disconnect switch, if appropriate, and open it. Lock-out and tag-out this switch, if necessary.

Two types of convenience outlets are offered on 48LC models: Non-unit powered and unit-powered. Both types provide a 125-volt GFCI (ground-fault circuit-interrupter) duplex receptacle rated at 15-A behind a hinged access cover, located on the corner panel of the unit. See Fig. 34.

Fig. 34 - Convenience Outlet Location

Installing Weatherproof Cover: A weatherproof while-in-use cover for the factory-installed convenience outlets is now required by UL standards. This cover cannot be factory-mounted due to its depth; it must be installed at unit installation. For shipment, the convenience outlet is covered with a blank cover plate.

The weatherproof cover kit is shipped in the unit's control box. The kit includes the hinged cover, a backing plate and gasket.

DISCONNECT ALL POWER TO UNIT AND CONVENIENCE OUTLET. LOCK-OUT AND TAG-OUT ALL POWER.

Remove the blank cover plate at the convenience outlet; discard the blank cover.

Loosen the two screws at the GFCI duplex outlet, until approximately 1/2-in. (13 mm) under screw heads are exposed. Press the gasket over the screw heads. Slip the backing plate over the screw heads at the keyhole slots and align with the gasket; tighten the two screws until snug (do not over-tighten).

Mount the weatherproof cover to the backing plate as shown in Fig. 35. Remove two slot fillers in the bottom of the cover to permit service tool cords to exit the cover. Check for full closing and latching.

Fig. 35 - Weatherproof Cover Installation

Non-unit powered type: This type requires the field installation of a general-purpose 125-volt 15-A circuit powered from a source elsewhere in the building. Observe national and local codes when selecting wire size, fuse or breaker requirements and disconnect switch size and location. Route 125-v power supply conductors into the bottom of the utility box containing the duplex receptacle.

Unit-powered type: A unit-mounted transformer is factory-installed to stepdown the main power supply voltage to the unit to 115-v at the duplex receptacle. This option also includes a manual switch with fuse, located in a control box and mounted on a bracket behind the convenience outlet; access is through the unit's control box access panel. See Fig. 34.

The primary leads to the convenience outlet transformer are not factory-connected. If local codes permit, the transformer primary leads can be connected at the line-side terminals on the unit-mounted non-fused disconnect switch; this will provide service power to the unit when the unit disconnect switch is open. See Fig. 36.

Test the GFCI receptacle by pressing the TEST button on the face of the receptacle to trip and open the receptacle. Check for proper grounding wires and power line phasing if the GFCI receptacle does not trip as required. Press the RESET button to clear the tripped condition.

Using unit-mounted convenience outlets: Units with unit-mounted convenience outlet circuits will often require that two disconnects be opened to de-energize all power to the unit. Treat all units as electrically energized until the convenience outlet power is also checked and de-energization is confirmed. Observe National Electrical Code Article 210, Branch Circuits, for use of convenience outlets.

			C10730
UNIT VOLTAGE	CONNECT AS	PRIMARY CONNECTIONS	TRANSFORMER TERMINALS
208, 230	240	L1: RED +YEL L2: BLU + GRA	H1 + H3 H2 + H4
460	480	L1: RED Splice BLU + YEL L2: GRA	H1 H2 + H3 H4
575	600	L1: RED L2: GRA	H1 H2

Fig. 36 - Powered Convenience Outlet Wiring

Fig. 37 - Convenience Outlet Utilization Notice

HACR —

The amp rating of the HACR factory-installed option is based on the size, voltage, indoor motor and other electrical options of the unit as shipped from the factory. If field-installed accessories are added or changed in the field (i.e., power exhaust), the HACR may no longer be of the proper amp rating and therefore will need to be removed from the unit. See unit nameplate and label on factory-installed HACR for the amp rating of the HACR that was shipped with the unit from the factory. See unit nameplates for the proper fuse, HACR or maximum over-current protection device required on the unit with field-installed accessories.

C12105

Fig. 38 - HACR Caution Label

Factory-Option Thru-Base Connections —

All units are equipped with the ability to bring utilities through the base.

Gas is brought up through an embossed area located in the gas section behind the gas entrance post. Access is gained through the gas access panel. A knock out must be removed to accomplish this.

The electrical entrance is located in the control box area and can be accessed through the control box access panel. An embossed area is provided with three knock outs. High voltage is brought through the multi knock out by removing the appropriate size for the size of the fitting required. A $7/_8$ -in. knock out is provided for low voltage. An additional $7/_8$ -in. knock out is provided for a 115 volt line which is used when the unit is equipped with the non-unit powered convenience outlet option.

All required fittings are field supplied. Install fittings when access to both top and bottom of the base pan is available. See electrical and gas connections for routing and connection information.

Units Without Thru-Base Connections -

- 1. Install liquid tight conduit between disconnect and control box.
- 2. Pull correctly rated high voltage wires through the conduit.
- 3. Install power lines to terminal connections as shown in Fig. 33.

Field Control Wiring —

The 48LC unit requires an external temperature control device such as a thermostat (field-supplied).

Thermostat —

Install a Carrier-approved accessory 3-stage thermostat according to installation instructions included with the accessory. If a 3-stage cooling thermostat is not available use a 2-stage cooling thermostat instead, but note that this will limit cooling to just 2 stages. Locate the thermostat accessory on a solid wall in the conditioned space to sense average temperature in accordance with the thermostat installation instructions.

If the thermostat contains a logic circuit requiring 24-v power, use a thermostat cable or equivalent single leads of different colors with minimum of eight leads. If the thermostat does not require a 24-v source (no "C" connection required), use a thermostat cable or equivalent with minimum of seven leads. Check the thermostat installation instructions for additional features which might require additional conductors in the cable.

For wire runs up to 50 ft (15 m), use no. 18 AWG (American Wire Gage) insulated wire (35° C minimum). For 50 to 75 ft (15 to 23 m), use no. 16 AWG insulated wire (35° C minimum). For over 75 ft (23 m), use no. 14 AWG insulated wire (35° C minimum). All wire sizes larger than no. 18 AWG cannot be directly connected to the thermostat and will require a junction box and splice at the thermostat.

Unit Without Thru-Base Connection Kit —

Correctly rated low voltage wire can be routed through the rubber grommet located on the corner post adjacent to the control box access panel. Route wire through the grommet and then route the wire behind the corner post utilizing the factory provided wire ties secured to the control box. This will insure separation of the field low voltage wire and the high voltage circuit. Route the low voltage wire to the Integrated Staging Control (ISC) board. See Fig. 39.

- Note 1: Typical multi-function marking. Follow manufacturer's configuration Instructions to select Y2.
- Note 2: Y2 to Y3 connection required for 2-stage cooling operation and when integrated economizer function is desired.
- Note 3: To Connect a 2-Stage Thermostat:
- Y2 to Y3 connection required for 2-stage cooling operation which provides low and high cooling states.
- Note 4: SystemVu controller is default configured for 3-stage cooling and 2-stage heating thermostats; it can be configured for other thermostat types.

– – – Field Wiring

a48-9346

Fig. 39 - Typical Low-Voltage Control Connections

NOTE: If utilizing the through the base connections, route the low voltage wire through the wire ties to the Integrated Staging Control (ISC) board (see Fig. 40).

Fig. 40 - Field Control Wiring Raceway

Heat Anticipator Settings -

Set heat anticipator settings at 0.14 amp for the first stage and 0.14 amp for second-stage heating.

Transformer Connection for 208-v Power Supply -

All units except 208/230-v units are factory wired for the voltage shown on the nameplate. If the 208/230-v unit is to be connected to a 208-v power supply, the control transformer must be rewired by moving the black wire with the 1/4-in. female spade connector from the 230-v connection and moving it to the 208-v 1/4-in. male terminal on the primary side of the transformer. Refer to unit label diagram for additional information.

<u>RTU Open Controller (Factory-Installed Option)</u>

For details on operating 48LC*014-26 units equipped with the factory-installed RTU Open option refer to 48/50LC 07-26 Factory Installed Option RTU Open Multi-Protocol Controller Controls, Start-up, Operation and Troubleshooting.

SystemVu[™] Controller (Factory-Installed Option)

For details on operating 48LC*014-26 units equipped with the factory-installed SystemVu control option refer to → 48/50LC 04-26 Single Package Rooftop Units with SystemVu Controls Version 2.X Controls, Start-up, OperationandTroubleshootingmanual.
Humidi-MiZer® System Control Connections

NOTE: It is suggested to ensure the Auto-Changeover function of an installed thermostat is enabled when used in conjunction with the Humidi-MiZer Adaptive Dehumidification system.

Humidi-MiZer System - Space RH Controller -

The Humidi-MiZer dehumidification system requires a field-supplied and installed space relative humidity control device. This device may be a separate humidistat control (contact closes on rise in space RH above control setpoint) or a combination thermostat-humidistat control device with isolated contact set for dehumidification control.

NOTE: Use of a humidistat device is not permitted on 48LC units equipped with RTU Open control; these units require use of a field-supplied RH sensor (33ZCSENSRH-02 or 33ZHCSENDRH-02), or a ZS series sensor with humidity sensing. SystemVu^M controls requires a Space Humidistat (HL38MG029) or a Wall Mount Space Humidity Sensor (33ZCSENSRH-01) or a Duct Mount Humidity Sensor (33ZCSENDRH-01).

To connect the Carrier humidistat (HL38MG029):

- 1. Route the humidistat 2-conductor cable (field-supplied) through the hole provided in the unit corner post.
- 2. Feed wires through the raceway built into the corner post (see Fig. 40) to the 24-v barrier located on the left side of the control box. The raceway provides the ETL-required clearance between high-voltage and low-voltage wiring.
- 3. Use wire nuts to connect humidistat cable to two PINK leads in the low–voltage wiring as shown in Fig. 42.

C09295

Fig. 41 - Accessory Field-Installed Humidistat

NOTE: $48LC^{**}014 - 26$ units require a 3-stage cooling thermostat device and are not compatible with Carrier's Edge[®] Pro thermidistat.

Fig. 42 - Typical Humidi-MiZer Adaptive Dehumidification System Humidistat Wiring

C14113

Integrated Staging Control (ISC) Board

Fig. 43 - Integrated Staging Control (ISC) Board

ISC Board - Sequence of Operation

General —

The Carrier Integrated Staging Control (ISC) is intended for use with a standard thermostat or direct digital controls (DDC) capable of three cooling stages. After initial power to the board, a Green LED will blink with a 1 second duty cycle indicating the unit is running properly. In the event of the ISC board failing, the Green LED will be OFF or continuously ON. When the unit is not running properly, the Green LED will blink along with Red LED lights. The Red LED light configuration will indicate the type of error the board has identified. See Fig. 43 for LED locations and Table 7 for a list of status codes.

The ISC board can be remotely shutdown by removing Jumper 4 and wiring to the Remote Shutdown terminal. The Smoke Control Module can shutdown the unit by removing Jumper 3 and wiring to the Smoke Shutdown terminal. The Smoke Alarm terminal on the ISC Board provides a pass thru connection should a smoke alarm signal be connected. In the case of the RTU Open option, the RTU Open controller provides the signal which is passed thru the ISC board to the Smoke Alarm terminal.

The crankcase heater will run at all times except when the compressors are running. An auxiliary power supply (24Vac) available at TB-4 Terminal is provided to power auxiliary equipment. An optional Phase Monitor Relay can be wired to the PMR terminal by removing Jumper 5. An optional Condensate Flow Switch can be wired to the COFS Terminal by removing Jumper 7.

Ventilation —

In the Ventilation/Fan Mode (G on the thermostat), the indoor-fan will run at low speed and the damper will operate at minimum position.

Table 7 – Status (Code Descriptions	for ISC Board LEDs
--------------------	-------------------	--------------------

50000 //			LEC		ION	
ERROR#	ERROR NAME	LED01	LED02	LED03	LED04	LED05
1	Check Smoke Detector/PMR/AUX		RED			
2	Check HPS/LPS/COFS	RED	RED			
3	Call for Y3 with no call for Y1. Check Y1 wiring.			1	RED	
4	Call for Y3 with no call for Y1/Y2. Check Y1 wiring.				RED	RED
5	Call for Y2 with no call for Y1. Check Y1 wiring.		RED		RED	
6	Call for W2 with no call for W1. Check W1 wiring.	RED		1		RED
7	Call for heat (W1/W2) and cooling (Y1/Y2/Y3). Check thermostat wiring.	RED	RED		RED	RED
8	Call for heat (W1/W2) with no IFM. Check G wiring.		RED	Blinking Green	RED	RED
9	Call for cooling (Y1/Y2/Y3) with no G. Check G wiring	RED	RED	LED	RED	
10	Call for heat (W1/W2) and cooling (Y1/Y2/Y3) with no G. Check thermostat and G wiring.	RED	RED	(Note 1)		RED
11	Check ISC Board and the thermostat wiring	RED			RED	RED
12	Call for Economizer Y1 Feedback (ECON) from economizer with no call for Y1 from thermostat. Check thermostat and economizer wiring.	RED				
13	Check ISC Board and the thermostat wiring	RED			RED	
14	Check ISC Board and the thermostat wiring					RED
15	Check ISC Board and the thermostat wiring		RED			RED

NOTES: 1. Green LED Blinking at 1HZ indicates normal operation.

2. Solid red LED indicates an error exists, see above LED configuration.

Cooling —

In the Cooling Mode, the small and large compressors will be sequenced to maintain the thermostat temperature setpoint. The chart below shows the cooling operation based on the following conditions.

INPUT	OUTPUT						
Thermostat	Compressor C1	Compressor C2	Indoor Fan Speed	Outdoor Fan Speed			
First Stage Cooling (Y1)	On	Off	Low	Low (700 rpm)			
Second Stage Cooling (Y2)	Off	On	Medium	Medium (800 rpm)			
Third Stage Cooling (Y3)	On	On	High	High (1000 rpm)			

The outdoor fan and VFD controlled indoor-fan will operate at low, medium and high speed. The indoor-fan speed (rpm) is factory set by the CFM and static pressure requirements for the unit installed.

Humidi-MiZer[®] System (Optional) —

In the Dehumidification Mode, both compressors will run and Indoor airflow will be rise to High Speed.

At subcooler reheating mode (reheat-1), during part load conditions when the room temperature and humidity are above the set point, the unit initiates the sub-cooling mode of operation; a call for cooling and dehumidification. RDV (Reheat Discharge Valve) and TWV (Three Way Valve) close; Indoor and Outdoor airflow will rise until reaching 100% of Speed.

At hot-gas-bypass reheating mode (reheat-2), when there is a call for dehumidification without a call for cooling, a portion of the hot gas from the compressor bypasses the condenser coil when RDV opens and hot gas is fed into the liquid line, TWV closes in this mode and the system provides mainly latent cooling. Indoor airflow will rise until reaching 100% of Speed, Outdoor airflow will run at High speed as long as outdoor temperature is above 80° F (26.7°C); when operating in this mode below 80° F (26.7°C) OAT, the system outdoor fan will operate as shown in the table below based on Size:

LC Size	RPM	Number of Fans On	Number of Fans Off
14	250	3	0
17	250	4	0
20	160	4	0
24	250	6	0
26	250	6	0

Economizer (Optional) -

When the economizer is in Free Cooling Mode and a demand for cooling exists (Y1 on the thermostat), the economizer will modulate the outdoor-air damper to provide a 50°F (10°C) to 55°F (13°C) mixed-air temperature into the zone and run the indoor-fan at high speed. As mixed-air temperature fluctuates above 55 °F (13°C) or below 50°F (10°C) dampers will be modulated (open or close) to bring the mixed-air temperature back within control. Upon more call for cooling (Y2 on the thermostat), the outdoor-air damper will maintain its current position, compressor C1 will run and the outdoor-fan will run at low speed. If there is further demand for cooling, the outdoor-air damper will maintain its current position, compressor C2 will run and the outdoor-fan will run at medium speed. The VFD controlled indoor-fan will operate at high speed regardless of the cooling demand.

If the increase in cooling capacity causes the mixed-air temperature to drop below 45° F (7°C), the outdoor-air damper will return to the minimum position. If the mixed-air temperature continues to fall, the outdoor-air damper will close. Control returns to normal once the mixed-air temperature rises above 48° F (9°C). The power exhaust fans will be energized and de-energized, if installed, as the outdoor-air damper opens and closes.

In field-installed accessory CO_2 sensors are connected to the Economizer, a demand controlled ventilation strategy will begin to operate. As the CO_2 level in the zone increases above the CO_2 set-point, the minimum position of the damper will be increased proportionally. As the CO_2 level decreases because of the increase of fresh air, the outdoor-air damper will be proportionally closed. For economizer operation, there must be a thermostat call for the fan (G). If the unit is occupied and the fan is on, the damper will operate at minimum position. Otherwise, the damper will be closed.

Low Ambient Cooling Operation Down to 40°F (4°C)—

In Low Ambient RTU conditions when the temperature is between 55°F (13°C) and 40°F (4°C), the Low Ambient Switch (LAS) will be active and the outdoor fans will run to the pre-set factory outdoor-fan speed. When the temperature is greater than 65°F (18°C), the Low Ambient Switch will deactivate and the outdoor fans will run in the standard cooling mode. If the Outdoor Fan Select Switch (see Fig. 44) is in the ON position, the outdoor fans will run in the Fan Cycle Speed Mode (FCS) set to 250 rpm. If the Outdoor Fan Select Switch is in the OFF position, the outdoor fans will run in the Minimum Fan Speed Mode (MIN) set to 160 rpm regardless of the cooling demand.

LC Size 14 through 26 units have a SPST normally open Low Ambient Switch wired across the TS and OF terminal and a jumper placed across the PS terminal (see Fig. 45). When the LAS is active, the switch will close making contact to the OF terminal. This is done for units that require all outdoor fans to run at the same pre-set factory Low Ambient Speed.

C13328

a48-9341

Fig. 45 - Schematic of SPST Low Ambient Switch

The Low Ambient Temperature Outdoor Fan Control Table (below) shows the operation of the outdoor fan for each unit.

Table 8 – Low Ambient Temperature Outdoor Fan Control

LC Size	No. of Fans On	No. of Fans Off	Switch	Outdoor Fan Select Switch	RPM
14	3	0	SPST	Up	250
17	4	0	SPST	Up	250
20	4	0	SPST	Up	250
24	6	0	SPST	Up	250
26	6	0	SPST	Up	250

Heating -

In the Heating Mode (W1 and G on the thermostat), the ISC board sends power to W on the IGC board. Assuming the unit is controlled through a room thermostat set for fan auto, the indoor-fan motor will energize and the outdoor-air dampers will open to their minimum position. The ISC board upon seeing W1 and G ON will turn the indoor fan to high speed.

The IGC board starts its gas ignition process. A check is made to ensure that the rollout switch and limit switch are closed. If the check was successful, the induced draft motor is energized, and when its speed is satisfactory, as proven by the flue gas pressure switch, the ignition activation period begins. The burners will ignite within 5 seconds. If the burners do not light, there is a 22-second delay before another 5-second attempt. This sequence is repeated for 15 minutes or until the burners light. If, after the 15 minutes, the burners still have not lit, heating is locked out. To reset the control, break 24VAC power to the thermostat.

When gas ignition occurs, the IGC board will continue to monitor the condition of the rollout switch, the limit switches, the flue gas pressure switch, as well as the flame sensor.

When W1 is turned OFF, the IGC board turns off the gas valve. The IGC board has a delay time before it turns IFO=OFF. At this time, the ISC board sees W1=OFF and IFO=ON. The ISC will keep the indoor fan ON high speed. Once the IGC board delay times out, the ISC board will see W1=OFF and IFO=OFF, which then turns the indoor fan OFF.

If the call for W1 lasted less than 1 minute, the heating cycle will not terminate until 1 minute after W1 became active. If the unit is controlled through a room thermostat set for fan auto, the indoor fan motor will continue to operate for an additional 45 seconds then stop. If the over temperature limit opens after the indoor motor is stopped, but within 10 minutes of W1 becoming inactive, on the next cycle the time will be extended by 15 seconds. The maximum delay is 3 minutes. Once modified, the fan OFF delay will not change back to 45 seconds unless power is reset to the control. A LED indicator is provided on the IGC to monitor operation.

When additional heat is required, W2 closes and initiates power to the second stage of the main gas valve. When the thermostat is satisfied, the gas valve closes, interrupting the flow of gas to the main burners.

EconoMi\$er[®] X (Factory-Installed Option)

EconoMi\$er X is an economizer system which is available for 48LC 14-26 units.

The factory-installed option consists of:

- Either a Low leak or a Standard leak economizer damper assembly
- Direct-drive damper actuator with local equipment bus communications
- W7220 economizer controller with keypad and display
- Supply Air Temperature sensor (20K ohm)
- Outdoor changeover condition sensor (either 20K ohm dry-bulb or enthalpy sensor)

Unit Installation —

All damper hardware and standard economizer control components except the enthalpy sensor are factory-mounted in their operating location. Complete the unit installation by relocating the enthalpy sensor (when provided; see below), then assembling and mounting the unit's outside air hood. Refer to the base unit's installation instruction manual for directions on locating the hood parts package and assembling the hood with filters.

Enthalpy Sensor Relocation —

See Fig. 54 for view of the enthalpy sensor. Locate the enthalpy sensor on the side of the economizer housing; remove mounting screws and save screws. Confirm the DIP switches are set at OFF, OFF, OFF (see Table 16). Move the enthalpy sensor to the front face of the economizer housing and mount per label.

W7220 Economizer Controller

The economizer controller used on electro mechanical units is the Honeywell W7220.

The W7220 provides typical economizer functions, including:

- Management of outside air damper for base unit Occupied (damper open and modulating) and unit OFF or Unoccupied status (damper closed)
- Free-cooling using all outside air when outdoor conditions permit Integrated cooling operation using outside air and mechanical cooling when required
- Demand Controlled Ventilation (DCV) for modulating ventilation airflow according to space CO₂ level (requires factory-option or field-installed CO₂ sensor)

The W7220 control also includes a new capability that will adjust the damper control points during DCV or minimum ventilation operation as the indoor fan speed is changed. This control function ensures that required space ventilation airflow quantities are maintained during reduced fan speed operation.

Additional control capabilities include automatic detection of new sensors and detection of sensor failure or loss of communication. The W7220 control module includes an integral user interface with keypad and LCD display that permits direct input of setpoint values and configurations and display of status and alarms.

The W7220 controller is located in the RTU base unit's Control Box. See the Installation Instructions for this base unit for the location of the Control Box access panel.

User Interface —

The user interface consists of a 2-line LCD display and a 4-button keypad on the front of the economizer controller.

Fig. 46 - W7220 Controller

Keypad

The four navigation buttons (see Fig. 46) are used to scroll through the menus and menu items, select menu items, and to change parameter and configuration settings.

Using the Keypad with Menus

To use the keypad when working with menus:

- Press the ▲ (Up arrow) button to move to the previous menu.
- Press the ▼ (Down arrow) button to move to the next menu.
- Press the ← (Enter) button to display the first item in the currently displayed menu.
- Press the ① (Menu Up/Exit) button to exit a menu's item and return to the list of menus.

The Menus in display order are:

- STATUS
- SETPOINTS
- SYSTEM SETUP
- ADVANCED SETUP
- CHECKOUT
- ALARMS

Using the Keypad with Settings and Parameters

To use the keypad when working with Setpoints, System and Advanced Settings, Checkout tests and Alarms:

- 1. Navigate to the desired menu.
- 2. Press the ← (Enter) button to display the first item in the currently displayed menu.
- 3. Use the ▲ and ▼ buttons to scroll to the desired parameter.
- Press the ← (Enter) button to display the value of the currently displayed item.
- 5. Press the ▲ button to increase (change) the displayed parameter value.
- 6. Press the ▼ button to decrease (change) the displayed parameter value.
 - NOTE: When values are displayed, pressing and holding the ▲ or ▼ button causes the display to automatically increment.
- 7. Press the ↓ (Enter) button to accept the displayed value and store it in nonvolatile RAM.
- 8. "CHANGE STORED" displays.

- 9. Press the ↓ (Enter) button to return to the current menu parameter.
- 10. Press the **(**Menu Up/Exit) button to return to the previous menu.

Menu Structure

IMPORTANT: Table 9 illustrates the complete hierarchy. Your menu parameters may be different depending on your configuration. For example if you do not have a DCV (CO_2) sensor, then none of the DCV parameters appear.

The menu hierarchy has been modified to reflect controller configuration for 2-speed indoor fan application in the Staged Air Volume option.

NOTE: Some parameters in the menus use the letters MA or MAT, indicating a mixed air temperature sensor location before the cooling coil. This unit application has the control sensor located after the cooling coil, in the fan section, where it is designated as (Cooling) Supply Air Temperature or SAT sensor.

Menu	Parameter	Parameter Default Value	Parameter Range and Increment [†]	EXPANDED PARAMETER NAME Notes
STATUS	ECON AVAIL	NO	YES/NO	ECONOMIZING AVAILABLE YES = economizing available; the system can use outside air for free cooling when required
	ECONOMIZING	NO	YES/NO	ECONOMIZING ACTIVE YES = Outside air being used for Cooling Stage 1. NO = Economizing not active
	OCCUPIED	NO	YES/NO	OCCUPIED YES = OCC signal received from space thermostat or unitary controller. YES = 24 Vac on terminal OCC. NO = 0 Vac on terminal OCC.
	HEAT PUMP	n/a**	COOL HEAT	HEAT PUMP MODE (Not available on 2–Speed configuration)
	COOL Y1 – IN	OFF	ON/OFF	FIRST STAGE COOLING DEMAND (Y1–IN)Y1-I signal from space thermostat or unitary controller for Cooling Stage 1.ON = 24 Vac on terminal Y1–IOFF = 0 Vac on terminal Y1–I
	COOL Y1-OUT	OFF	ON/OFF	FIRST STAGE COOLING RELAY OUTPUT ON = 24 Vac on terminal Y1–O; Stage 1 mechanical cooling called on OFF = 0 Vac on terminal Y1–O; no mechanical cooling
	COOL Y2-IN	OFF	ON/OFF	SECOND STAVE COOLING DEMAND (Y2–IN) Y2–I signal from space thermostat or unitary controller for Cooling Stage 2. ON = 24 Vac on terminal Y2–I OFF = 0 Vac on terminal Y2–I
	COOL Y2-OUT	OFF	ON/OFF	SECOND STAGE COOLING RELAY OUTPUT ON = 24 Vac on terminal Y2–O; Stage 2 mechanical cooling called on OFF = 0 Vac on terminal Y2–O; no Stage 2 mechanical cooling
	MATEMP	nn°F (or °C)	0 to 140°F (−18 to 60°C)	SUPPLY AIR TEMPERATURE, Cooling Mode Displays value of measured mixed/cooled air from SAT sensor in fan section. Displays if not connected, short or out-of-range. See Menu Note 2
	DA TEMP	nn°F (or °C)	0 to 140°F (–18 to 60°C)	DISCHARGE AIR TEMPERATURE, after Heating section (Accessory sensor required) Displays when Discharge Air sensor is connected and displays measured discharge temperature. Displays if sensor sends invalid value, if not connected, short or out-of-range.
	OA TEMP	nn°F (or °C)	-40 to 140°F (-40 to 60°C)	OUTSIDE AIR TEMPERATURE Displays measured value of outdoor air temperature. Displays if sensor sends invalid value, if not connected, short or out-of-range.
	OA HUM	nn%	0 to 100%	OUTSIDE AIR RELATIVE HUMIDITY Displays measured value of outdoor humidity from OA enthalpy sensor.
	RA TEMP	nn°F (or °C)	0 to 140°F (-18 to 60°C)	RETURN AIR TEMPERATURE (Accessory sensor required) Displays measured value of return air temperature from RAT sensor.

Table 9 – Menu Structure*

Table 9 - Menu Structure* (cont)

Menu	Parameter	Parameter Default Value	Parameter Range and Increment [†]	EXPANDED PARAMETER NAME Notes
STATUS (cont)	RA HUM	nn%	0 to 100%	RETURN AIR RELATIVE HUMIDITY (Accessory enthalpy sensor required) Displays measured value of return air humidity from RA sensor.
	IN CO2	ppm	0 to 2000 ppm	SPACE/RETURN AIR CO2 (CO ₂ sensor required, accessory or factory option) Displays value of measured CO ₂ from CO ₂ sensor. Invalid if not connected, short or out-of-range
	DCV STATUS	n/a	ON/OFF	DEMAND CONTROLLED VENTILATION STATUS (CO ₂ sensor required, accessory or factory option) Displays ON if IN CO ₂ value above setpoint DCV SET and OFF if below setpoint DCV SET.
	DAMPER OUT	2.0V	2.0 to 10.0V	Displays voltage output to the damper actuator. 0% = OSA Damper fully closed 100% = OSA Damper full open
	ACT POS	nn%	0 to 100%	Displays actual position of outdoor air damper actuator 2.0V = OSA Damper fully-closed 10.0V = OSA Damper full open
	ACT COUNT	n/a	1 to 65535	Displays number of times actuator has cycled. 1 Cycle equals accrued 180° of actuator movement in any direction
	ACTUATOR	n/a	OK/Alarm (on Alarm menu)	Displays Error if voltage or torque is below actuator range
	EXH1 OUT	OFF	ON/OFF	EXHAUST STAGE 1 RELAY OUTPUT Output of EXH1 terminal: ON = relay closed OFF = relay open
	EXH2 OUT	OFF	ON/OFF	EXHAUST STAGE 2 RELAY OUTPUT Output of AUX terminal; displays only if AUX = EXH2 ON = relay closed OFF = relay open
	MECH COOL ON	0	0, 1, or 2	Displays stage of mechanical cooling that is active.
	FAN SPEED	n/a	LOW or HIGH	SUPPLY FAN SPEED Displays speed setting of fan on a 2-speed fan unit.
	W (HEAT ON)	n/a	ON/OFF	HEAT DEMAND STATUS Displays status of heat demand on a 2-speed fan unit.
ETPOINTS	MAT SET	53°F (12°C)	38 to 65°F; (3 to 18°C) increment by 1	SUPPLY AIR SETPOINT Setpoint determines where the economizer will modulate the OA damper t maintain the mixed air temperature. See Menu Note 2.
	LOW T LOCK	32°F (0°C)	-45 to 80°F; (-43 to 27°C) increment by 1	COMPRESSOR LOW TEMPERATURE LOCKOUT Setpoint determines outdoor temperature when the mechanical cooling cannot be turned on.
	DRYBLB SET	63°F (17°C)	48 to 80°F (9 to 27°C) increment by 1	OA DRY BULB TEMPERATURE CHANGEOVER SETPOINT Setpoint determines where the economizer will assume outdoor air temperature is good for free cooling; e.g.: at 63° F (17° C), unit will economize at 62° F (16.7° C) and below and not economize at 64° F (17.8° C) and above. There is a 2° F (1.1° C)deadband. See Menu Note 3
	ENTH CURVE	ES3	ES1, ES2, ES3, ES4, or ES5	ENTHALPY CHANGEOVER CURVE (Requires enthalpy sensor option) Enthalpy boundary "curves" for economizing using single enthalpy.
	DCV SET	1100ppm	500 to 2000 ppm; increment by 100	DEMAND CONTROLLED VENTILATION SETPOINT Displays only if CO ₂ sensor is connected. Setpoint for Demand Controlled Ventilation of space. Above the setpoint, the OA dampers will modulate open to bring in additional OA to maintain a space ppm level below the setpoint.
	MIN POS L	6.0 V	2 to 10 Vdc	VENTILATION MINIMUM POSITION AT LOW SPEED Displays ONLY if a CO ₂ sensor is NOT connected.
	MIN POS H	4.4 V	2 to 10 Vdc	VENTILATION MINIMUM POSITION AT HIGH SPEED Displays ONLY if a CO ₂ sensor is NOT connected.
	VENTMAX L	6.0 V	2 to 10 Vdc	DCV MAXIMUM DAMPER POSITION AT LOW SPEED (Requires CO ₂ sensor connected)
	VENTMAX H	4.4 V	2 to 10 Vdc	DCV MAXIMUM DAMPER POSITION AT HIGH SPEED (Requires CO ₂ sensor connected)
	VENTMIN L	3.7 V	2 to 10 Vdc	DCV MINIMUM DAMPER POSITION AT LOW SPEED (Requires CO ₂ sensor connected)
	VENTMIN H	2.8 V	2 to 10 Vdc	DCV MINIMUM DAMPER POSITION AT HIGH SPEED (Requires CO ₂ sensor connected)
	EXH1 L SET	65%	0 to 100%; Increment by 1	EXHAUST FAN STAGE 1 SETPOINT AT LOW SPEED Setpoint for OA damper position when exhaust fan1 is powered by the economizer
	EXH1 H SET	50%	0 to 100%; Increment by 1	EXHAUST FAN STAGE 1 SETPOINT AT HIGH SPEED Setpoint for OA damper position when exhaust fan1 is powered by the economizer

Table 9 - Menu Structure* (cont)

Menu	Parameter	Parameter Default Value	Parameter Range and Increment [†]	EXPANDED PARAMETER NAME Notes
SETPOINTS (cont)	EXH2 L SET	80%	0 to 100%; Increment by 1	EXHAUST FAN STAGE 2 SETPOINT AT LOW SPEED Setpoint for OA damper position when exhaust fan1 is powered by the economizer. Only used when AUX1 –O is set to EHX2.
	EXH2 H SET	75%	0 to 100%; Increment by 1	EXHAUST FAN STAGE 2 SETPOINT AT HIGH SPEED Setpoint for OA damper position when exhaust fan1 is powered by the economizer. Only used when AUX1 –O is set to EHX2.
SYSTEM SETUP	INSTALL	01/01/10		Display order = MM/DD/YY Setting order = DD, MM, then YY.
	UNITS DEG	°F	°F or °C	Sets economizer controller in degrees Fahrenheit or Celsius.
	EQUIPMENT	CONV	Conventional or HP	CONV = conventional; HP O/B = Enable Heat Pump mode. Not available with 2-speed See Menu Note 4
	AUX2 I	W	W required for 2-speed mode	W = Informs controller that system is in heating mode. SD = Enables configuration of shutdown (not available on 2–Speed) See Menu Note 4
	FAN TYPE	2speed	2speed required	Sets the economizer controller for operation of 1 speed or 2 speed indoor fan system. See Menu Note 4.
	FAN CFM	5000cfm	100 to 15000 cfm; increment by 100	UNIT DESIGN AIRFLOW (CFM) Enter ONLY of using DCVCAL ENA = AUTO The value is found in the Project Submittal documents for the specific RTL
	AUX OUT	NONE	NONE EXH2 SYS	Select OUTPUT for AUX1 O relay NONE = not configured (output is not used) EXH2 = second damper position relay closure for second exhaust fan SYS = use output as an alarm signal
	occ	INPUT	INPUT or ALWAYS	OCCUPIED MODE BY EXTERNAL SIGNAL When using a setback thermostat with occupancy out (24 Vac), the 24 Vac is input to the OCC terminal. RTU control circuit provides 24–Vac to OCC through OCCUPIED terminals on Integrated Staging Control. Board
	FACTORY DEFAULT	NO	NO or YES	Resets all set points to factory defaults when set to YES. LCD will briefly flash YES and change to NO but all parameters will change to the factory default values. RECHECK AUX2 I and FANTYPE for required 2-speed values.
ADVANCED SETUP	MA LO SET	45°F (7°C)	35 to 55°F; (2 to 12°C) Incremented by 1°	SUPPLY AIR TEMPERATURE LOW LIMIT Temperature to achieve Freeze Protection (close damper and alarm if temperature falls below setup value)
	FREEZE POS	CLO	CLO or MIN	FREEZE PROTECTION DAMPER POSITION Damper position when freeze protection is active CLO = closed MIN = MIN POS or VENTMAX
	CO2 ZERO	0ppm	0 to 500 ppm: Increment by 10	CO ₂ ppm level to match CO ₂ Sensor start level.
	CO2 SPAN	2000ppm	1000 to 3000 ppm; Increment by 50	CO ₂ ppm span to match CO ₂ sensor.
	STG3 DLY	2.0h	0 min, 5 min, 15 min, then 15 min intervals. Up to 4 h or OFF	COOLING STAGE 3 DELAY Delay after stage 2 for cool has been active. Turns on 2 nd stage of cooling when economizer is 1 st stage and mechanical cooling is 2 nd
	SD DMPR POS	CLO	CLO or OPN	Function NOT AVAILABLE with 2-speed mode
	DCVCAL ENA	MAN	MAN (manual)	Turns on the DCV automatic control of the dampers. Resets ventilation.
	MATTCAL	0.0°F (or C)	+/-2.5°F (+/-1.4°C)	SUPPLY AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration supply air temperature (SAT) sensor
	OA T CAL	1.0°F (or C)	+/-2.5°F (+/-1.4°C)	OUTSIDE AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration outside air temperature (OAT) sensor
	OA H CAL	0% RH	+/-10% RH	OUTSIDE AIR HUMIDITY CALIBRATION Allows for the operator to adjust for an out of outside air enthalpy sensor
	RA T CAL	2.0°F (or C)	+/-2.5°F (+/-1.4°C)	RETURN AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration return air temperature (RA) sensor
	RA H CAL	0% RH	+/-10% RH	RETURN AIR HUMIDITY CALIBRATION Allows for the operator to adjust for an out of calibration return air enthalp sensor
	DA T CAL	0.0°F (or C)	+/-2.5°F (+/-1.4°C)	DISCHARGE AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration discharge air temperature (DAT) sensor
	2SP FAN DELAY	5 Minutes	0 to 20 minutes in 1 minute increments	TIME DELAY ON 2 nd STAGE ECONOMIZING While in the Economizing mode, this is the delay between thermostat Y2 call and Y1–O output to mechanical cooling stage, to allow high speed fa operation to attempt to cool space first.

Table 9 - Menu Structure* (cont)

Menu	Parameter	Parameter Default Value	Parameter Range and Increment [†]	EXPANDED PARAMETER NAME Notes
CHECKOUT	DAMPER VMIN .HS	n/a	n/a	Positions OA damper to VMIN High Speed position
	DAMPER VMAX .HS	n/a	n/a	Positions OA damper to VMAX High Speed position
	DAMPER OPEN	n/a	n/a	Positions OA damper to the full open position.
	DAMPER CLOSE	n/a	n/a	Positions damper to the fully closed position
	CONNECT Y1-0	n/a	n/a	Closes the Y1-O relay (Y1-O)
	CONNECT Y2-0	n/a	n/a	Closes the Y2-O relay (Y2-O)
	CONNECT AUX10	n/a	n/a	 Energizes the AUX1O output. If Aux setting is: NONE – not action taken ERV – 24 Vac out. Turns on or signals an ERV that the conditions are not good for economizing but are good for ERV operation.^{††} SYS – 24 Vac out. Issues a system alarm
ALARMS(_)				Alarms display only when they are active. The menu title "ALARMS()" includes the number of active alarms in parenthesis ().
	MA T SENS ERR	n/a	n/a	SUPPLY AIR TEMPERATURE SENSOR ERROR
	CO2 SENS ERR	n/a	n/a	CO2 SENSOR ERROR
	OA T SENS ERR	n/a	n/a	OUTSIDE AIR TEMPERATURE SENSOR ERROR OAT sensor connected at input terminals OAT
	OA SYLK SENS ERR	n/a	n/a	OUTSIDE AIR TEMPERATURE SENSOR ERROR OAT sensor connected on S – bus
	DA T SENS ERR	n/a	n/a	DISCHARGE AIR TEMPERATURE SENSOR ERROR
	SYS ALARM	n/a	n/a	When AUX is set to SYS and there is any alarm (e.g., failed sensors, etc.), the AUX terminal has 24 Vac out.
	ACT UNDER V	n/a	n/a	ACTUATOR VOLTAGE LOW Voltage received at actuator is below expected range
	ACT OVER V	n/a	n/a	ACTUATOR VOLTAGE HIGH Voltage received at actuator is above expected range
	ACT STALLED	n/a	n/a	ACTUATOR STALLED Actuator stopped before reaching commanded position

Table 9 illustrates the complete hierarchy, your menu parameters may be different depending on your configuration. For example if you do not have a DCV (CO_2) sensor, then none of the DCV parameters appear. *

t When values are displayed, pressing and holding the A or V button causes the display to automatically increment.

** n/a = not applicable

⁺⁺ ERV Operation: When in Cooling mode AND the conditions are NOT OK for economizing – the ERV terminal will be energized. In the Heating mode the ERV terminal will be energized when the OA is below the ERV OAT setpoint in the setpoint menu.

Menu Notes

STATUS -> OCCUPIED - The factory-standard Occupancy signal originates with a thermostat or other controller call for indoor fan operation at ISC 1 terminal G. This signal passes through the Integrated Staging Control Board's OCCUPIED jumper JMP1 to the ECONO connector and to the W7220's OCC input terminal. An external timeclock or relay is required to implement an Occupancy schedule on the economizer damper position.

2 STATUS -> MA TEMP, SETPOINTS -> MAT SET - The W7220 menu parameters and labels include designations MA, MAT and Mixed Air for the economizer cooling control sensor. On these rooftop units, the economizer control sensor is located downstream of the evaporator/indoor coil in the supply fan section where this sensor is designated as Supply Air Temperature (SAT) sensor.

3 SETPOINTS -> DRYBLB SET - This point is not displayed if a Return Air (differential) temperature sensor or an Outdoor Air enthalpy sensor is connected. SYSTEM SETUP parameters must be configured as noted for 2-Speed unit operation: 4

EQUIPMENT = CONV **AUX2 I** = W FAN TYPE = 2SPEED

Connections and Applications

W7220 Economizer Module Wiring —

Use Fig. 47 and Tables 10 and 11 to locate the wiring terminals for the Economizer module.

Fig. 47 - W7220 Economizer Module Terminal Connection Labels

Table 10 – Economizer Module – Left Hand Terminal Blocks

Label	Туре	Description				
Top Left Terminal Block						
MAT MAT	20k NTC and COM	Supply Air Temperature Sensor (polarity insensitive connection)				
OAT OAT	20k NTC and COM	Outdoor Air Temperature Sensor (polarity insensitive connection)				
S-BUS S-BUS	S–Bus (Sylk Bus)	Enthalpy Control Sensor (polarity insensitive connection)				
	Bottom	Left Terminal Block				
IAQ 2-10	2-10 Vdc	Air Quality Sensor Input (e.g. CO ₂ sensor)				
IAQ COM	СОМ	Air Quality Sensor Common				
IAQ 24V	24 Vac	Air Quality Sensor 24 Vac Source				
ACT 2-10	2-10 Vdc	Damper Actuator Output (2-10 Vdc)				
ACT COM	СОМ	Damper Actuator Output Common				
ACT 24V	24 Vac	Damper Actuator 24 Vac Source				

Table 11 – Economizer Module – Right Hand Terminal Blocks

C14156

Label Type		Description		
	Top Rig	ht Terminal Block		
N/A	n/a	The first terminal is not used		
AUX2-I	24 Vac IN	Input from Thermostat W1 indicating base unit is in Heat mode, damper controls to High Fan Speed setpoints		
000	24 Vac IN	Occupied / Unoccupied Input		
E-GND	E-GND	Earth Ground - System Required		
EXH1	24 Vac OUT	Exhaust Fan 1 Output		
AUX1-O	24 Vac OUT	Programmable: Exhaust fan 2 output or ERV or System Alarm output		
	Bottom R	ight Terminal Block		
Y2-1	24 Vac IN	Y2 in – Cooling Stage 2 Input from space thermostat		
Y2-0	24 Vac OUT	Y2 out – Cooling Stage 2 Output to stage 2 mechanical cooling		
Y1-I	24 Vac IN	Y1 in – Cooling Stage 2 Input from space thermostat		
Y1-0	24 Vac OUT	Y1 out – Cooling Stage 2 Output to stage 2 mechanical cooling		
С	СОМ	24 Vac Common		
R	24 Vac	24 Vac Power (Hot)		

Refer to Figs 48 and 49 for sensor and controls connections.

a48-9347

Fig. 48 - W7220 Sensor and Control I/O Connections

Fig. 49 - Actuator/S-BUS

a48-9348

Economizer Control Configurations

Enthalpy Changeover Control —

Economizer changeover based on outdoor air enthalpy requires an outdoor air enthalpy sensor to replace the OAT sensor. The enthalpy sensor is available as a factory-installed option or as a field-installed accessory (part number HH57AC081). See Fig. 1 for model number nomenclature; check Position #15 for codes R or S indicating a factory-installed enthalpy sensor. Use Fig. 50 and Table 12 to select the enthalpy changeover setting to enter in menu item SETPOINTS -> ENTH CURVE.

Enthalpy Settings -

When the OA temperature, enthalpy and dew point are below the respective setpoints, the Outdoor Air can be used for economizing. Fig. 50 shows the new single enthalpy boundaries in the W7220. There are 5 boundaries (setpoints ES1 through ES5), which are defined by dry bulb temperature, enthalpy and dew point.

Refer to Table 12 for ENTH CURVE setpoint values.

The W7220 calculates the enthalpy and dew point using the OA temperature and humidity input from the OA enthalpy sensor. When the OA temperature, OA humidity and OA dew point are all below the selected boundary, the economizer sets the economizing mode to YES, economizing is available.

When all of the OA conditions are above the selected boundary, the conditions are not good to economize and the mode is set to NO. Fig. 50 shows the 5 current boundaries. There is also a high limit boundary for differential enthalpy. The high limit boundary is ES1 when there are no stages of mechanical cooling energized and HL (high limit) when a compressor stage is energized.

Table 12 provides the values for each boundary limit.

Fig. 50 - Single Enthalpy Curve and Boundaries

Enthalpy	Temp.	emp. Temp.	Enthalpy	Po	Point P1		Point P2	
Curve	Dry-Bulb (°F)	Dewpoint (°F)	(btu/lb/da)	Temp. (°F)	Humidity %RH	Temp. (°F)	Humidity %RH	
ES1	80.0	60.0	28.0	80.0	36.8	66.3	80.1	
ES2	75.0	57.0	26.0	75.0	39.6	63.3	80.0	
ES3	70.0	54.0	24.0	70.0	42.3	59.7	81.4	
ES4	65.0	51.0	22.0	65.0	44.8	55.7	84.2	
ES5	60.0	48.0	20.0	60.0	46.9	51.3	88.5	
HL	86.0	66.0	32.4	86.0	38.9	72.4	80.3	

Table 12 – Single Enthalpy and Dual Enthalpy High Limit Curves (EN Units)

Demand Controlled Ventilation —

Demand Controlled Ventilation (DCV) function requires a space air CO_2 sensor be connected to the W7220 controller. The CO_2 sensor provides a 2 to 10 vdc signal proportional to the space CO_2 level. This sensor is available as a factory-installed option (located in the unit's return air plenum) or as a field-installed accessory. See Fig. 1 for model number nomenclature; check Position #9 for codes E, F, G or H indicating a factory-installed CO_2 sensor. The W7220 automatically recognizes the connection of this sensor and self-enables the DCV function after the Configuration period.

Fig. 51 - DCV Single-Speed System Setpoints

DCV With Single-Speed Fan System: During DCV, the outside air damper modulates between two user configurations depending upon the signal level of the space or return air CO_2 sensor representing the space occupancy level. The lower of these two positions is referred to as the Minimum IAQ Damper Position (designated VENTMIN) while the higher is referred to as Economizer Minimum Position (designated MINIMUM POSITION or VENTMAX). The VENTMIN position

should be set to an economizer position that brings in enough fresh air to remove contaminants and CO_2 generated by sources other than people; this airflow rate is designated Va. The VENTMAX should be set to an economizer position that brings in enough fresh air to remove contaminants and CO_2 generated by all sources including people at the design condition for maximum space occupancy; this airflow rate is designated Vbz.

DCV With Two-Speed Fan System: Ventilation codes require that the same ventilation rates (Vbz and Va, expressed as CFM) be provided regardless of supply fan speed. When the supply fan speed is reduced, the internal static pressure in the unit's return plenum also decreases. If the same outside air damper position is retained, the airflow rate through the OA damper decreases below the Va and Vbz levels. To restore ventilation rates to design levels, the damper positions VENTMIN and VENTMAX must be automatically adjusted when the fan speed changes. The W7220 provides this function when it is configured for 2-speed fan operation through a second set of damper position setpoints.

During operation at High fan speed, the damper setpoint limits are designated VENTMIN H and VENTMAX H. Damper operation is same as described under Single-Speed Fan above.

During operation at Low fan speed, the damper setpoint limits change to VENTMIN L and VENTMAX L. These settings are higher than the comparable High speed settings and cause the outside air damper to open more to allow the same Va and Vbz airflow rates to be admitted to the space.

Adjust the DCV setpoints VENTMAX H and VENTMAX L with supply fan speed in High speed and Low speed respectively to provide the design load ventilation airflow rate Vbz by measuring outside air temperature, return air temperature and supply air temperature. Make damper position adjustments with at least 10°F temperature difference between the outdoor and return-air temperatures.

Fig. 52 - DCV 2-Speed System Setpoints — Same Ventilation CFM at Both Speeds

To determine the damper setpoint position, perform the following procedure for each condition setpoint, with mechanical cooling OFF:

Calculate the appropriate supply air temperature using the following formula:

 $TS = (TO \times Vbz/CFM) + TR \times (CFM - Vbz)/CFM$

- TS = Supply Air Temperature
- TO = Outdoor Air Temperature
- Vbz = Design Maximum Ventilation CFM
- CFM= Unit Supply Airflow Rate
- TR = Return Air Temperature

As an example:

Unit Airflow Rate at High Speed is 4000 CFM Ventilation CFM at design occupancy Vbz is 1200 CFM TO = 60 F

TR = 75 F

Required TS = 60 x (1200/4000) + 75 x (4000 - 1200/4000) = 60 x 0.30 + 75 x 0.70 = 18.0 + 52.5 = 70.5

At the W7220 keypad, enter the parameter SETUP -> VENTMAX H and adjust the setpoint value until the observed Supply Air Temperature (MA TEMP) reaches 70.5. Press the \leftarrow "Enter" key to save this setpoint to controller memory.

When determining VENTMIN setpoints, substitute the value for Va in place of Vbz in the formula.

DCV Setpoint: The SETPOINTS parameter DCV SET defines the space CO_2 level above which the DCV mode begins to open the outside air damper beyond its VENTMIN ventilation lower limit. This setpoint should be a minimum of 100 ppm greater than the outdoor ambient CO_2 level to ensure the outside air will be capable of diluting the space CO_2 level. A typical value for outdoor CO_2 is 400 ppm; adjust the setpoint DCV SET to 500 ppm if outdoor CO_2 level is not known. The factory default value for DCV SET is 1100 ppm.

Economizer Occupancy Control -

The 24-v signal that terminates at the W7220's OCC input to place the economizer control in Occupied mode when the supply fan starts is routed through the rooftop unit's Integrated Staging Control Board at its OCCUPANCY jumper. To implement an occupancy control for the economizer operation, connect a contact set at ISC OCCUPANCY quick-connect terminals and cut jumper JMP1. To allow automatic occupancy mode, close the control contacts. To place the economizer in Unoccupied mode, open the control contacts.

Fig. 53 - Integrated Staging Control (ISC) Board - Occupancy Terminals and Jumper

<u>Hardware</u>

Actuators —

The EconoMi $e^{\$ X damper actuators are direct-coupled types with spring-return. Power is 24-v from the W7220 outputs. Range of rotation is 95-degrees; timing for full-range movement is 90 seconds to drive open in normal operation, 30 seconds in Test Mode and 25 seconds for spring return.

These actuators are S-bus enabled. The S-bus is a proprietary local equipment network that connects the W7220 controller, one S-enabled actuator and up to three S-type enthalpy sensors on a two-wire communication network. The S-bus is polarity-insensitive. Devices attached to the S-bus are automatically recognized by the controller.

Actuator command position is defined in a 2-10 vdc value. 2.0-v is outside air damper position fully-closed (0% open); 10.0-v is damper position fully-open (100% open). See Table 13 to correlate control voltage values to outside air damper opening percentage.

Table 13 – Actuator Voltage vs. Damper Position

Vdc	% Open	Vdc	% Open	Vdc	% Open
2.0	0	4.8	35	7.6	70
2.4	5	5.2	40	8.0	75
2.8	10	5.6	45	8.4	80
3.2	15	6.0	50	8.8	85
3.6	20	6.4	55	9.2	90
4.0	25	6.8	60	9.6	95
4.4	30	7.2	65	10.0	100

These units use a 5-Nm (44 lb-in.) torque model, Honeywell Series MS3105K actuator.

Supply Air Temperature Sensor —

The W7220 controller uses a 20-k ohm analog sensor for Supply Air Temperature (SAT). The thermistor is attached to a ring terminal. The ring terminal is attached to the unit's supply fan housing, downstream of the unit's indoor coil. The SAT sensor is connected to the W7220 input terminals marked MAT. See Table 14 for sensor resistance to temperature correlations.

The W7220 controller requires a valid signal from its SAT channel in order to function. If the SAT connection to the W7220 is lost, the W7220 will initiate an alarm condition immediately. No economizing operation will be permitted until this alarm is cleared.

Table 14 - SAT/OAT Sensor Characteristics

Deg C	Ohms	Deg F	Ohms
-30	415156	-20	386130
-25	301540	0	193070
-20	221210	20	101820
15	163834	32	70200
-10	122453	40	55420
-5	92382	45	47771
0	70200	50	41258
5	53806	55	35725
10	41561	60	31035
15	32341	65	27069
20	25346	70	23719
25	20000	77	20000
30	15886	80	18473
35	12698	100	11544
40	10212	120	6768
45	8261		
50	6720		

Outside Air Temperature Sensor —

EconoMi\$er X systems equipped with outdoor dry bulb temperature changeover control include a 20-k ohm analog sensor to measure Outdoor Air Temperature (OAT). This is the same sensor used for the SAT function; see Table 14 for resistance vs temperature characteristics.

The OAT sensor is attached to the outside air damper frame. It is connected to the W7220's OAT input terminals.

If an accessory enthalpy sensor is added to an EconoMi\$er X system with factory dry bulb changeover, disconnect this OAT sensor wiring at the W7220's OAT input terminals.

Enthalpy Control Sensor Configuration-

The W7220 economizer control system can accommodate up to three S-bus enthalpy sensors. On EconoMi\$er X models with factory-installed Enthalpy Changeover control, one S-bus sensor is provided in the economizer outdoor section. Additional sensors may be added to measure Return Air and Discharge Air conditions.

The Enthalpy Control sensor (Part Number: HH57AC081) communicates with the W7220 Economizer controller on the two-wire local equipment network bus (S-bus) and can either be wired using a two-pin header or using a side connector. This sensor is used for all OAT (Outdoor Air Temperature), RAT (Return Air Temperature) and DAT (Discharge Air Temperature), depending on how its three position DIP switch is set.

Use Fig. 54 and Table 15 to locate the wiring terminals for each Enthalpy Control sensor.

Use Fig. 54 and Table 16 to set the DIP switches for the desired use (location) of the sensor.

NOTE: Dimensions are in inches. Dimensions in () are in mm.

a50-9614

Fig. 54 - Enthalpy Control Sensor, Dimensions and DIP Switch Location

Table 15 – Enthalpy Control Sensor Wiring Terminations*

Tern	ninal	Turne	Description
Nbr	Label	Туре	Description
1	S-BUS	S-BUS	S–Bus Communications (Enthalpy Control Sensor Bus)
2	S-BUS	S-BUS	S–Bus Communications (Enthalpy Control Sensor Bus)

* Terminals are polarity insensitive.

Use	DIP Switch Positions for Switches 1, 2, and 3						
USe	1	2	3				
DA	OFF	ON	OFF				
RA	ON	OFF	OFF				
OA	OFF	OFF	OFF				

Table 16 – Enthalpy Control Sensor DIP Switch Settings

Legend

 $\mathsf{DA} = \mathsf{Discharge} \mathsf{Air}$

RA = Return Air

OA = Outside Air

When a S-bus sensor is connected to an existing network, it will take 60 minutes for the network to recognize and auto-configure itself to use the new sensor. During the 60 minute setup period, no alarms for sensor failures (except SAT) will be issued and no economizing function will be available.

Operating Sequences

Staged Air Volume (3-Speed) Fan Motor -

The Integrated Staging Control (ISC) Board in the main unit determines the operating speed (LOW/MED/HIGH) of the indoor fan based on space thermostat demand conditions. See Table 17 for this logic.

Table 17 – Supply Fan Speed Logic without Economizer

TSTAT OUTPUT				
G/OCC	0-V	24-V	0-V	0-V
Y1	0-V	24–V	0-V	0-V
Y2	0-V	0-V	24-V	0-V
Y3	0-V	0-V	0-V	24-V
W1	0-V	0-V	0-V	24-V
W2	0-V	0-V	0-V	24-V
SUPPLY FAN MOTOR SPEED	OFF	LOW	MED	HIGH

W7220 Economizer Control —

Tables 18 and 19 provide the W7220 Input/Output Logic. Table 18 describes economizer functions for a unit without a CO_2 sensor. Table 19 describes economizer functions for a unit with Demand Controlled Ventilation (CO_2 sensor connected). The supply fan speed is included in these tables for reference; this is neither an input or output of the W7220 controller.

Base Unit Controls —

Base unit includes standard electro-mechanical controls, Staged Air Volume (3-speed supply fan motor with VFD), EconoMi $e^{\ }X$ (with W7220 controller) and thermostat or unitary controller that energizes the G terminal in cooling and heating to control the supply fan operation.

Cooling, Unit With EconoMi\$er X Without CO₂ Sensor —

For Occupied mode operation of the EconoMi\$er X control, there must be a 24-v signal at terminal G at the unit's Integrated Staging Control Board from the thermostat; supply fan motor will start and run in Low Speed. The signal at G is connected to W7220 input OCC, placing the EconoMi\$er X control in Occupied mode; the economizer actuator is commanded open to the MIN POS L ventilation position. Removing the signal at OCC places the EconoMi\$er X control in Unoccupied mode; the economizer actuator is driven back to full-closed position.

When free cooling using outside air is not available, the unit cooling sequence will be controlled directly by the space thermostat. Thermostat call for Stage 1 Cooling energizes ISC terminals G and Y1; supply fan motor starts and runs in Low Speed. The Y1 demand is received at W7220 terminal Y1-I. Outside air damper position will be at MIN POS L. W7220 output Y1-O is energized; first stage mechanical cooling starts.

As space temperature falls and space cooling load is satisfied, the thermostat will remove its call for first stage cooling; ISC terminal Y1 call is removed. The W7220 input Y1-I is removed; output Y1-O is de-energized, stopping first stage cooling.

When ISC terminal Y1 is de-energized, terminal G may remain energized, indicating Continuous Fan operation.

The supply fan motor will continue to run in Low Speed. W7220 input OCC remains energized; the outside air damper remains in MIN POS L. If ISC terminal G is also de-energized with Y1, indicating AUTO Fan operation, then the supply fan motor will stop. The W7220 input at OCC is removed; the outside air damper closes.

If the space temperature continues to rise, the thermostat will call for second stage cooling; ISC terminal Y2 is also energized. The supply fan motor shifts to MED Speed. Outside air damper position will remain in MIN POS L, second stage cooling starts.

As space temperature falls, the thermostat will remove its call for second stage cooling; ISC terminal Y2 call is removed. The supply fan motor shifts back to Low Speed. The outside air damper will remain at MIN POS L and the ISC board will stop second stage mechanical cooling.

If the space temperature continues to rise, the thermostat will call for third stage cooling; ISC terminal Y-3 is also energized. The supply fan motor shifts to High Speed. The outside air damper position will shift to MIN POS H, third stage cooling starts.

As space temperature falls, the thermostat will remove its call for third stage cooling; ISC terminal Y3 call is removed. The supply fan will shift to Medium Speed. The outside air damper is repositioned to MIN POS L and stop third stage mechanical cooling.

When free cooling is available as determined by the appropriate changeover command (outdoor dry bulb,

outdoor enthalpy, differential dry bulb or differential enthalpy), a space thermostat call for Stage 1 Cooling energizes ISC terminals G and Y1; supply fan motor starts and runs in High Speed. The G demand is received at W7220 input OCC; outside air damper moves to MIN POS L. The Y1 demand is received at W7220 terminal Y1-I. The W7220 economizer control will modulate the outside air damper open and closed to maintain the unit cooling supply air temperature at setpoint MAT SET (default 53°F (12°C)). Compressor will not run.

During free cooling operation, a supply air temperature (SAT) above MAT SET will cause the outside air damper to modulate between MIN POS L setpoint and 100% open. As SAT decreases and approaches setpoint MA LO SET (default $45^{\circ}F$ (7°C)), the outside air damper will maintain at the MIN POS L setting. With SAT below MA LO SET, the outside air damper will be closed or at minimum (see FREEZE POS) When SAT rises to MA LO SET plus 3°F, the outside air damper will re-open to MIN POS L setting.

Should 100% outside air not be capable of satisfying the space cooling load, space temperature will rise and the thermostat will call for second stage cooling; ISC terminal Y2 is also energized. The supply fan motor remains at High Speed. Outside air damper position will remain at MIN POS L, starting second stage cooling (Compressor 1 operation). Damper will modulate to maintain SAT at MAT SET concurrent with Compressor 1 operation.

	INPUTS				OUTPUTS			
DEMAND	DEMAND OUTSIDE AIR			Ref:			Occupancy	
CONTROLLED	Good to	Y1-I	Y2-1	FAN SPD*	Mechanical Cooling Stage		OCC Yes	OCC No
VENTILATION	VENTILATION economize?				Y1-0/1ST	Y2-0/2ND	Outside Air Da	mper Position
	Off	Off	Low	0-v/Off	0-v/Off	MIN POS L	Closed	
	No	On	Off	Low	24-v/On	0-v/Off	MIN POS L	Closed
		On	On	High	24-v/On	24-v/On	MIN POS H	Closed
NO CO2 SENSOR Yes	Off	Off	Low	0-v/Off	0-v/Off	MIN POS L	Closed	
	Yes	On	Off	Low	0-v/Off	0-v/Off	Modulating: MIN POS L to Full–Open	Modulating: Closed to Full-Open
		On	On	High	2SP DELAY [†] ; 24v/On	0-v/Off **	Modulating: MIN POS H to Full–Open	Modulating: Closed to Full-Open

Table 18 - W7220 Input/Output without CO₂ Sensor

Fan Speed for reference only; this is not an input or output function of the W7220.

[†] See Menu ADV SETUP -> 2SP FAN DELAY for details.

** See Menu ADV SETUP -> STG# DLY. With Stage 3 delay enabled, control can turn on 2nd stage of cooling Y2-O after delay if the call for Y2-I has not been satisfied.

	INPUTS				OUTPUTS			
DEMAND	OUTSIDE AIR			Ref:	Mashaniash		Occupancy	
CONTROLLED	ONTROLLED Good to		Y21	FAN SPD*	Mechanical	Cooling Stage	OCC Yes	OCC No
VENTILATION	VENTILATION economize?				Y1-0/1ST	Y2-0/2ND	Outside Air Da	mper Position
		Off	Off	Low	0-v/Off	0-v/Off	VENTMIN L	Closed
	No	On	Off	Low	24-v/On	0-v/Off	VENTMIN L	Closed
		On	On	High	24-v/On	24-v/On	VENTMIN H	Closed
		Off	Off	Low	0-v/Off	0-v/Off	VENTMIN L	Closed
Below set	Yes	On	Off	Low	0-v/Off	0-v/Off	Modulating: VENTMIN L to Full-Open	Modulating: Closed to Full-Open
	On	On	High	2SP DELAY [†] ; 24v/On	0-v/Off **	Modulating: VENTMIN H to Full-Open	Modulating: Closed to Full-Open	
		Off	Off	Low	0-v/Off	0-v/Off	Modulating: VENTMIN L to VENTMAX L	Closed
No	No	On	Off	Low	24-v/On	0-v/Off	Modulating: VENTMIN L to VENTMAX L	Closed
		On	On	High	24-v/On	24-v/On	Modulating: VENTMIN H to VENTMAX H	Closed
Above set Yes	Off	Off	Low	0-v/Off	0-v/Off	Modulating: VENTMIN L to VENTMAX L	Closed	
	Yes	On	Off	Low	0-v/Off	0-v/Off	Modulating: VENTMIN L to Full-Open	Modulating: Closed to Full-Open
		On	On	High	2SP DELAY [†] ; 24v/On	0-v/Off **	Modulating: VENTMIN H to Full-Open	Modulating: Closed to Full–Open

Table 19 – W7220 Input/Output with Demand Controlled Ventilation (DCV)

* Fan Speed for reference only; this is not an input or output function of the W7220.

[†] See Menu ADV SETUP -> 2SP FAN DELAY for details.

** See Menu ADV SETUP -> STG# DLY. With Stage 3 delay enabled, control can turn on 2nd stage of cooling Y2-O after delay if the call for Y2-I has not been satisfied.

As space temperature falls, the thermostat will remove its call for second stage cooling; ISC terminal Y2 call is removed. The supply fan motor remains High Speed. The outside air damper limit is repositioned to between MIN POS L and 100% open. Second stage cooling (Compressor 1 operation) stops. As space temperature continues to fall and space cooling load is satisfied, the thermostat will remove its call for first stage cooling; ISC terminal Y1 call is removed. The W7220 input Y1-I is removed; free cooling mode ends. Outside air damper will remain at MIN POS L if supply fan remains in operation (CONT FAN) or to closed if supply fan stops (AUTO FAN).

Should 100% outside air and second stage cooling (Compressor 1 operation) not be capable of satisfying the space cooling load, space temperature will rise and the thermostat will call for third stage cooling: ISC terminal Y3 is also energized, starting third stage cooling (Compressor 2 operation). The supply fan motor will remain at High Speed. The Y3 demand is received at W7220 input Y2-I. The outdoor air damper position will modulate from MIN POS H to 100% Open to maintain SAT at MAT SET concurrent with Compressor 2 operation.

As space temperature falls, the thermostat will remove its call for third stage cooling; ISC terminal Y3 call is removed. The supply fan will remain at High Speed. The W7220 input Y2-I is also removed; the outside air damper is repositioned to modulate from MIN POS L to 100% Open, third stage cooling (Compressor 2 operation) stops.

Power Exhaust: If accessory power exhaust is installed, the power exhaust fan motors will be energized by the economizer control as the dampers open above the setpoint EXH1 SET L during Low Speed operation or EXH1 SET H during High Speed fan operation. The EXH1 output will be de-energized as the dampers close below the EXH1 setpoint value.

Damper movement from full closed to full open (or vice versa) will take approximately $1-\frac{1}{2}$ minutes.

Heating With EconoMi\$er[®] X —

When the space temperature calls for heat (W1 closes), ISC terminal W1 is energized. The supply fan will start and run in High Speed. The W1 signal will connect to W7220 input AUX2I; the outside air damper will move to MIN POS H. Unit heating sequence will follow base unit control sequences.

Demand Controlled Ventilation —

If a space or return air CO_2 sensor is connected to the EconoMi e^{B} X control, a Demand Controlled Ventilation strategy will operate automatically.

When the space CO_2 level is below setpoint DCV SET (default 1100 ppm), the minimum ventilation position for the outside air damper will be reset to lower settings suited for offsetting CO_2 loads from space sources not including people. The settings will vary according to supply fan speed. When the supply fan speed is Low, the DCV minimum ventilation point is VENTMIN L. When the supply fan speed is High, the DCV minimum ventilation point is VENTMAX H.

As the CO_2 level in the space increases above the setpoint DCV SET (default 1100 ppm), the DCV ventilation position of the outside air damper will be increased proportionally, until the Maximum Ventilation setting is reached. The settings will vary according to supply fan speed. When the supply fan speed is Low, the DCV maximum ventilation point is VENTMAX L. When the supply fan speed is High, the DCV maximum ventilation point is VENTMAX H.

DCV operation will float between its VENTMIN and VENTMAX settings, never exceeding the VENTMAX limit as the space CO_2 level varies according to changes in people occupancy levels.

During concurrent demand for DCV and free cooling, the outdoor-damper will follow the higher demand condition from the DCV mode or from the free-cooling mode.

Setup and Configuration

Before being placed into service, the W7220 Economizer module must be setup and configured for the installed system according to project control specifications.

Inspect all wiring connections at the Economizer module's terminals, and verify compliance with the installation wiring diagrams.

Initial Menu Display —

On initial start up, Honeywell displays on the first line and Economizer W7220 on the second line. After a brief pause, the revision of the software appears on the first line and the second line will be blank.

Time-out and Screensaver -

When no buttons have been pressed for 10 minutes, the LCD displays a screen saver, which cycles through the Status items. Each Status items displays in turn and cycles to the next item after 5 seconds.

IMPORTANT: During setup, the Economizer module is live at all times.

Setup and configuration involves stepping through three menus and enabling required functions and re-selecting setpoints to meet project requirements. The menus used are SYSTEM SETUP, ADV SETUP and SETPOINTS.

Obtain a copy of the project control specifications before starting setup and configuration process.

NOTE: W7220 will be in the "set up" mode for the first 60 minutes after powered. If a sensor for OA air or S-bus device (sensor, actuator) is disconnected during the set up mode, the W7220 will not alarm that failure. The SAT sensor is a system "critical" sensor, if the SAT sensor is removed during the set up mode, the W7220 will alarm. After 60 minutes the W7220 controller will change to operation mode and all components removed or failed will alarm in the operation mode.

For this application with the 2-speed supply fan option, note that parameters EQUIPMENT, AUX2I and FAN TYPE have required settings. Check that these parameters are set at these required settings:

EQUIPMENT must be CONV AUX2I must be W FAN SPEED must be 2SPEED

Press the O (EXIT) button to exit the SYSTEM SETUP menu and return to top level menu. Scroll down to ADV SETUP menu and press \leftarrow (ENTER) button to enter this menu. Scroll down through the list of parameters and adjust settings as required. Be sure that the message CHANGE STORED appears with every change in parameter setting.

Press the O (EXIT) button to exit the ADV SETUP menu and return to top level menu. Scroll down to SETPOINTS menu and press \nleftrightarrow (ENTER) button to enter this menu. Scroll down through the list of parameters and adjust settings as required. Be sure that the message CHANGE STORED appears with every change in parameter setting.

SETPOINT Defaults: The default setpoint values represent many years of successful experience with economizing systems. Any changes that represent significant deviations from the default values should be well considered.

DCV SETPOINT: The default value for DCV SET is 1100 ppm. It is recommended that this setpoint be adjusted down to 500 ppm (or CO_2 level of outdoor air plus 100 ppm, whichever is higher) to permit an earlier initiation of the DCV mode as space occupancy increases.

Checkout

For checkout, review the Status of each configured parameter by observing the scrolling display from the Screensaver mode or by entering the STATUS menu.

Use the Checkout menu (see Table 9 on page 45) to test the damper operation and any configured outputs. Only items that are configured are shown in the Checkout menu. To perform a Checkout test:

- 1. Scroll to the desired test in the Checkout menu using the the ▲ and ▼ buttons.
- 2. Press the \leftarrow button to select the item.
- 3. RUN? appears.
- 4. Press the \leftarrow button to start the test.
- 5. The unit pauses and then displays IN PROGRESS.
- 6. When the test is complete, DONE appears.
- 7. When all desired parameters have been tested, press the ⑦ (Menu up) button to end the test.

The Checkout tests can all be performed at the time of installation or at any time during the operation of the system as a test that the system is operable.

A CAUTION

EQUIPMENT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage.

Be sure to allow enough time for compressor startup and shutdown between checkout tests so that you do not short-cycle the compressors.

Status —

Use the STATUS menu (see pages 42 and 43) to check the parameter values for the various devices and sensors configured.

Calibration of Sensors -

There are up to six sensor calibration settings available in the ADV SETUP menu (depending on which sensors are connected to the W7220). See page 44 for this menu.

Resetting All Defaults —

Menu SYSTEM SETUP contains parameter FACTORY DEFAULT. This parameter will reset all setpoints back to factory default values.

To reset all values to defaults, scroll to the SYSTEM SETUP menu, enter the menu and scroll to parameter FACTORY DEFAULT. Enter this parameter and change the display value from NO to YES. Press ENTER \leftarrow 1.

After resetting all values, scroll up in SYSTEM SETUP to ensure the three parameters requiring special values for use with 2-speed fan system are correct.

Troubleshooting

Power Up Delay-

Upon power up (or after a power outage or brownout) the W7220 controller module begins a 5-minute power up delay before enabling mechanical cooling.

Power Loss (Outage or Brownout) -

All setpoints and advanced settings are restored after any power loss or interruption.

NOTE: If the power goes below 18 Vac, the W7220 controller module assumes a power loss and the 5-minute power up delay will become functional when power returns above 18 Vac.

Alarms —

The Economizer module provides alarm messages that display on the 2-line LCD.

NOTE: Upon power up, the module waits 60 minutes before checking for alarms. This allows time for all the configured devices (e.g. sensors, actuator) to become operational. The exception is the SAT sensor which will alarm immediately.

If one or more alarms are present and there has been no keypad activity for at least 5 minutes, the Alarms menu displays and cycles through the active alarms. You can also navigate to the Alarms menu at any time. The list of alarms included in Table 9 (see page 45) is not a complete list of available alarm messages. Each sensor has alarms for temperature, humidity and enthalpy. The list of possible alarms will vary from unit to unit as different sensors are connected.

Clearing Alarms —

Once the alarm has been identified and the cause has been removed (e.g. replaced faulty sensor) the alarm can be cleared from the display.

To clear an alarm, perform the following:

- 1. Navigate to the desired alarm.
- 2. Press the \checkmark button.
- 3. ERASE? displays.
- 4. Press the \leftarrow button.
- 5. ALARM ERASED displays.
- 6. Press the ① (Menu up/Exit) button to complete the action and return to the previous menu.

NOTE: If the alarm still exists after you clear it, it is redisplayed within 5 seconds.

Table 20 – Operating Issues and Concerns

Issue or Concern	Possible Cause and Remedy
My outdoor temperature reading on the STATUS menu is not accurate.	Check the sensor wiring: • Enthalpy sensors are to be wired to the S–Bus terminals. • Temperature sensors are to be wired to the OAT and MAT terminals.
If my enthalpy sensor drifts in accuracy over time, can I re-calibrate it?	The sensor are not able to be re-calibrated in the field. However there is a menu item under the ADVANCED menu where you are able to input a limited offset in temperature and humidity for each sensor you have connected to the economizer.
Can I go back to factory defaults and start over?	Under the SYSTEM SETUP menu you can change the setpoints to the factory defaults.
Will I be able to see the LCD screen when it is in the unit?	The LCD screen has a backlight that is always illuminated.
What is a good setpoint for the Supply Air Temperature (SAT)?	The supply air temperature is the temperature of air that you want to supply to the space. In a commercial building, this is between 50 to 55°F (10 to 13°C). The supply air is the mixing of the return air and the outdoor air.
I am using enthalpy sensors. Why did the control ask me to input a dry bulb changeover temperature?	In the event the humidity sensor in the enthalpy sensors fails, the backup algorithm in the control is to default to the temperature sensor in the enthalpy sensor.
In checkout, the outdoor damper closes when I command it to open.	Check the actuator linkage or rotation. In the CHECKOUT mode, the outdoor damper should drive open or closed with the return air damper having the opposite effect.
How do I set my minimum position?	The minimum position is set using the VENTMIN and VENTMAX setup in the SETPOINTS menu. VENTMIN is the minimum ventilation required when using an occupancy sensor and VENTMAX is the minimum ventilation when not using an occupancy sensor for Demand Controlled Ventilation. The VENTMAX position is set the same as with the potentiometer on the analog economizers and is the output voltage to the damper actuator. The range is 2 Vdc closed OA damper and 10 Vdc open OA damper.
What if my damper does not go completely closed in the checkout operation?	Check the damper linkage or hub to make sure the damper is able to close completely.
How do I set the OCC?	There are two settings for the OCC setting, INPUT and ALWAYS. INPUT is from the space thermostat, if it has an occupancy output. ALWAYS is the unit in the occupied mode, if the economizer is powered (fan on).
Does the economizer save my program values if the unit loses power?	Yes, once the changes are stored in the controller they will be stored until they are changed by the operator.
If the unit is left in checkout, how long will the unit stay in checkout mode without input?	The unit will remain in checkout for 10 minutes, then return to normal operation.

Fig. 55 - Typical EconoMi\$er[®] X Wiring Diagram

a48-9340

CONTROL SET POINT AND CONFIGURATION LOG

Project Name/Location:

Model Number:

Serial Number: _____

Date: ____

Technician

Menu Tables:

- 1. SYSTEM SETUP
- 2. ADVANCED SETUP
- 3. SETPOINTS

Menu 1: System Setup

Parameter	Project Value	Parameter Default Value	Parameter Range and Increment	Notes
INSTALL		01/01/10		Display order = MM/DD/YY Setting order = DD, MM, then YY
UNITS DEG		_F	_F or _C	Sets economizer controller in degrees Fahrenheit or Celsius.
EQUIPMENT		CONV	CONV required for 2–speed mode	CONV = conventional; HP O/B = Enable Heat Pump mode; not available with 2-speed See Menu Note 4 (on page 45)
AUX2 I		W	W required for 2–speed mode	 W = Informs controller that system is in heating mode. SD = Enables configuration of shutdown (not available on 2–speed) See Menu Note 4 (on page 45)
FAN TYPE		2speed	2speed required	Sets the economizer controller for operation of 1 speed or 2 speed indoor fan system. See Menu Note 4 (on page 45)
FAN CFM		5000cfm	100 to 15000 cfm;	UNIT DESIGN AIRFLOW (CFM) Enter ONLY if using DCVCAL ENA = AUTO The value is found in the Project Submittal documents for the specific RTU.
AUX OUT		NONE	NONE ERV EXH2 SYS	Select OUTPUT for AUX1 O relay NONE = not configured (output is not used) ERV = Energy Recovery Ventilator EXH2 = second damper position relay closure for second exhaust fan SYS = use output as an alarm signal
occ		INPUT	INPUT or ALWAYS	OCCUPIED MODE BY EXTERNAL SIGNAL When using a setback thermostat with occupancy out (24 Vac), the 24–Vac is input to the OCC terminal. RTU control circuit provides 24–Vac to OCC through OCCUPIED terminals on Integrated Staging Control Board.
FACTORY DEFAULT		NO	NO or YES	Resets all set points to factory defaults when set to YES. LCD will briefly flash YES and change to NO but all parameters will change to the factory default values. RECHECK AUX2 I and FANTYPE for required 2-speed values.

Menu 2: Advanced Setup

Parameter	Project Value	Parameter Default Value	Parameter Range and Increment	Notes
MA LO SET		45°F (7°C)	35 to 55°F; (2 to 13°C) incremented by 1°	SUPPLY AIR TEMPERATURE LOW LIMIT Temperature to achieve Freeze Protection (close damper and alarm if temperature at SAT location falls below setup value)
FREEZE POS		CLO	CLO or MIN	FREEZE PROTECTION DAMPER POSITION Damper position when freeze protection is active CLO =closed MIN = MIN POS or VENTMAX
CO2 ZERO		0ppm	0 to 500 ppm: Increment by 10	CO ₂ ppm level to match CO ₂ Sensor start level.
CO2 SPAN		2000ppm	1000 to 3000 ppm; Increment by 50	CO ₂ ppm span to match CO ₂ sensor.
STG3 DLY		2.0h	0 min, 5 min, 15 min, then 15 min intervals. Up to 4 h or OFF	COOLING STAGE 3 DELAY Delay after stage 2 for cool has been active. Turns on 2nd stage of cooling when economizer is 1st stage and mechanical cooling is 2nd
SD DMPR POS		CLO	CLO or OPN	Function NOT AVAILABLE with 2-speed mode
DCVCAL ENA		MAN	MAN (manual)	Turns on the DCV automatic control of the dampers. Resets ventilation
MAT T CAL	0.0	1.0°F (or °C)	+/- 2.5°F (+/-1.4°C)	SUPPLY AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration supply air temperature (SAT) sensor
OA T CAL	2.0	3.0°F (or °C)	+/- 2.5°F (+/-1.4°C)	OUTSIDE AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration outside air temperature (OAT) sensor
OA H CAL		0% RH	+/- 10% RH	OUTSIDE AIR HUMIDITY CALIBRATION Allows for the operator to adjust for an out of calibration of outside air enthalpy sensor
RA T CAL	4.0	5.0°F (or °C)	+/- 2.5°F (+/-1.4°C)	RETURN AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration return air temperature (RA) sensor
RA H CAL		0% RH	+/- 10% RH	RETURN AIR HUMIDITY CALIBRATION Allows for the operator to adjust for an out of calibration return air enthalpy sensor
DA T CAL	0.0	1.0°F (or °C)	+/- 2.5°F (+/-1.4°C)	DISCHARGE AIR TEMPERATURE CALIBRATION Allows for the operator to adjust for an out of calibration discharge air temperature (DAT) sensor
2SP FAN DELAY		5 Minutes	0 to 20 minutes in 1 minute increments	TIME DELAY ON 2ND STAGE ECONOMIZING While in the Economizing mode, this is the delay between thermostat Y2 call and Y1–O output to mechanical cooling stage, to allow high speed fan operation to attempt to cool space first.

Menu 3: Setpoints

Parameter	Project Value	Parameter Default Value	Parameter Range and Increment	Notes
MAT SET		53°F (12°C)	38 to 65°F; (3 to 18°C) increment by 1°	SUPPLY AIR SETPOINT Setpoint determines where the economizer will modulate the OA damper to maintain the supply air temperature. See Menu Note 2 (on page 45).
LOW T LOCK		32°F (0°C)	– 45 to 80°F (– 43 to 27°C) increment by 1°	COMPRESSOR LOW TEMPERATURE LOCKOUT Setpoint determines outdoor temperature when the mechanical cooling cannot be turned on.
DRYBLB SET		63°F (17°C)	48 to 80°F; (9 to 27°C) increment by 1°	OA DRY BULB TEMPERATURE CHANGEOVER SETPOINT Setpoint determines where the economizer will assume outdoor air temperature is good for free cooling; e.g.: at 63°F (17°C), unit will economize at 62°F (16.7°C) and below and not economize at 64°F (17.8°C) and above. There is a 2°F (1.1°C) deadband. See Menu Note 3 (on page 45).
ENTH CURVE		ES3	ES1, ES2, ES3, ES4, or ES5	ENTHALPY CHANGEOVER CURVE (Requires enthalpy sensor option) Enthalpy boundary "curves" for economizing using single enthalpy.
DCV SET		1100ppm	500 to 2000 ppm; increment by 100	DEMAND CONTROLLED VENTILATION SETPOINT Displays only if CO_2 sensor is connected. Setpoint for Demand Controlled Ventilation of space. Above the setpoint, the OA dampers will modulate open to bring in additional OA to maintain a space ppm level below the setpoint.
MIN POS L		6.0 V	2 to 10Vdc	VENTILATION MINIMUM POSITION AT LOW SPEED Displays ONLY if a CO ₂ sensor is NOT connected.
MIN POS H		4.4 V	2 to 10Vdc	VENTILATION MINIMUM POSITION AT HIGH SPEED Displays ONLY if a CO ₂ sensor is NOT connected.
VENTMAX L		6.0 V	2 to 10Vdc	DCV MAXIMUM DAMPER POSITION AT LOW SPEED (Requires CO ₂ sensor connected)
VENTMAX H		4.4 V	2 to 10Vdc	DCV MAXIMUM DAMPER POSITION AT HIGH SPEED (Requires CO ₂ sensor connected)
VENTMIN L		3.7 V	2 to 10Vdc	DCV MINIMUM DAMPER POSITION AT LOW SPEED (Requires CO ₂ sensor connected)
VENTMIN H		2.8 V	2 to 10Vdc	DCV MINIMUM DAMPER POSITION AT HIGH SPEED (Requires CO ₂ sensor connected)
ERV OAT SP		32°F (0°C)	0 to 50°F; (–18 to 10°C) increment by 1°	ENERGY RECOVERY VENTILATION UNIT OUTDOOR AIR TEMPERATURE SETPOINT Only when AUX1 O = ERV
EXH1 L SET		65%	0 to 100%; increment by 1	EXHAUST FAN STAGE 1 SETPOINT AT LOW SPEED Setpoint for OA damper position when exhaust fan1 is powered by the economizer.
EXH1 H SET		50%	0 to 100%; increment by 1	EXHAUST FAN STAGE 1 SETPOINT AT HIGH SPEED Setpoint for OA damper position when exhaust fan1 is powered by the economizer.
EXH2 L SET		80%	0 to 100%; increment by 1	EXHAUST FAN STAGE 2 SETPOINT AT LOW SPEED Setpoint for OA damper position when exhaust fan 2 is powered by the economizer. Only used when AUX1-O is set to EHX2.
EXH2 H SET		75%	0 to 100%; increment by 1	EXHAUST FAN STAGE 2 SETPOINT AT HIGH SPEED Setpoint for OA damper position when exhaust fan 2 is powered by the economizer. Only used when AUX1–O is set to EHX2.

Staged Air Volume (SAV[™]) with Variable Frequency Drive

The Staged Air Volume (SAV) system utilizes a Variable Frequency Drive (VFD) to automatically adjust the indoor fan motor speed in sequence with the unit's ventilation, cooling and heating operation. Per ASHRAE 90.1-2016 standard during the first stage of cooling operation the SAV system will adjust the fan motor to provide 66% of the design airflow rate for the unit. When the call for the second stage of cooling is required, the SAV system will allow the design airflow rate for the unit established (100%). During the heating mode, the SAV system will allow total design airflow rate (100%) operation. During ventilation mode, the SAV system will operate the fan motor at 66% speed.

575V ONLY

Fig. 57 - VFD Location

C13209

Multi-Speed VFD Display Kit (Field-Installed Accessory)

NOTE: The Remote VFD Keypad is part of the Multi-Speed VFD display kit (PN: CRDISKIT002A00) which is a field-installed accessory. It is not included with the 48LC 14-26 base units.

The VFD keypad as shown in Fig. 58 consists of the following sections:

Fig. 58 - VFD Keypad

Alpha Numeric Display: The LCD display is back lit with 2 alpha-numeric lines. All data is displayed on the LCD.

Menu Key: Use the Menu key to select between Status, Quick Menu or Main Menu. The triangle icon at the bottom of the LCD display indicates the currently selected mode. (See number 5 in the table above.) **Navigation Keys and Status LEDs:** The Navigation keys and Status LEDs are detailed in the following table.

	C13114
1	Com. LED: Flashes when bus communications is communicating.
2	Green LED/On: Control selection is working.
3	Yellow LED/Warn.: Indicates a warning.
4	Flashing Red LED/Alarm: Indicates an alarm.
5	Arrows $\blacktriangle \nabla$: Use the Up and Down arrow keys to navigate between parameter groups, parameters and within parameters. Also used for setting local reference.
6	Back key: Press to move to the previous step or layer in the navigation structure.
7	OK key: Press to select the currently displayed parameter and for accepting changes to parameter settings.

Operation Keys and LEDs: The following table details the functions of the Operating keys. An illuminated yellow LED above the key indicates the active key.

C13115

Hand On key: Starts the motor and enables 1 control of the variable frequency drive (VFD) via the VFD Keypad option. **NOTE:** Please note that terminal 27 Digital Input (5-12 Terminal 27 Digital Input) has coast inverse as default setting. This means that the Hand On key will not start the motor if there is no 24V to terminal 27, so be sure to connect terminal 12 to terminal 27. 2 Off/Reset key: Stops the motor (off). If in alarm mode the alarm will be reset. 3 Auto On key: The variable frequency drive is controlled either via control terminals or serial communication.

Connecting the Keypad to the VFD

The VFD keypad can be mounted directly to the variable frequency drive, provided you can easily access the front panel of the VFD. If you do not have easy access to the VFD front panel, use the cable included with the kit to connect the keypad to the VFD.

Connecting the Keypad Directly to the VFD ----

1. Place the bottom of the VFD keypad into the variable frequency drive as shown in Fig. 59.

Fig. 59 - Align Bottom of VFD Keypad with Opening in VFD Front Panel

2. Push the top of the VFD keypad into the variable frequency drive as shown in Fig. 60.

Fig. 60 - Secure Keypad in Place

Using the Cable to Connect the Keypad to the VFD -

The VFD keypad can be connected to the variable frequency drive via the cable included with the Multi-Speed VFD display kit (PN: CRDISKIT002A00).

Fig. 61 - VFD Remote Keypad Cable

- 1. Connect the male end of the cable to the front panel of the variable frequency drive. Use 2 of the screws included with the kit to secure the cable to the VFD.
- 2. Connect the female end of the cable to the back panel of the VFD Remote keypad. Secure the cable to the remote keypad using the 2 remaining screws from the kit.

Program the VFD for 3 Discrete Indoor Fan Speeds

IMPORTANT: 48LC 14-26 units are programmed at the factory for 3 discrete indoor fan speeds. The following procedure is only to be used to recover this function after an event such as a system crash.

NOTE: This procedure requires use of the VFD Keypad which is included as part of the field-installed Multi-Speed VFD display kit (PN: CRDISKIT002A00). If the VFD keypad is not already installed, install it. See "Connecting the Keypad to the VFD" for details.

To program the VFD for 3 discreet indoor fan motor speeds:

1. At Power-Up:

At the first power up the LCD displays the Select Language screen. The default setting is English. To change the language, press the **OK** key and use the \blacktriangle and \blacktriangledown keys to scroll to the desired language and then press **OK**.

C13119 Fig. 62 - Keypad with Power Up Screen Displayed

- 2. Selecting Regional Settings:
 - a. Press the Off Reset key.
 - b. Press the **Menu** key to move the **▼**(triangle icon) so it is positioned over Main Menu. The display show the following -

0-**	Operation / Display
1-** Load and Motor	

c. Press the OK key, the display changes to -

- **NOTE:** Press the **Back** key to return to the previous display
 - d. With the top row highlighted, press **OK**. The display changes to -

e. Press **▼**(**Down Arrow** key) once; the display changes to -

- f. Press **OK**; the [0] is now highlighted.
- g. Press **▼(Down Arrow)** key once; the display changes to -

0-03 Regional Settings
[1] North America

h. Press OK

NOTE: If the Alarm 060 appears, follow Step 3 to clear the alarm. Make sure to press **Off Reset** when done. If there is no alarm, continue at Step 4.

- 3. Clearing Alarm 060: External Interlock:
 - a. Press the **Menu** key twice to position the ▼(triangle icon) over Main Menu; the display changes to -

b. Press the ▼(Down Arrow) key until the following display appears -

4-**	Limits / Warnings	
	Digital In/Out	

c. Press OK. The display changes to -

ļ	5–0* Digital I/O mode
	5–1* Digital Inputs

d. Press ▼(Down Arrow) once to highlight the bottom row and press OK. The display changes to -

5-10 Terminal 18 Digital In... [8] Start

- e. Press **▼(Down Arrow**) twice; the following display appears-
 - 5-12 Terminal 27 Digital In...
 - [7] External Interlock
- f. Press **OK** to highlight the number in the bracket.
- g. Press **▼**(**Down Arrow**) until the following display appears -

5–12 Terminal 27 Digital In… [0] No operation

- h. Press OK.
- i. Press Off Reset. The Alarm indicator disappears.
- 4. Entering Grid Type:
 - a. Press the **Menu** key to move the **▼**(triangle icon) so it is positioned over Main Menu. The display show the following -

0-0* Basic Settings	
0-1* Set-up Operations	

b. Press OK twice: the display changes to -

c. Press **▼**(**Down Arrow**) three times, to reach the following display -

0–06 Grid Type	
[102] 200-240V/60Hz	

- d. Press OK to highlight the number in the bracket and then use the ▲ and ▼ (Up and Down Arrow) keys to select the desired voltage and Hertz for the unit.
- e. Press **OK** to accept the selection and continue.

- 5. Entering Motor Data:
 - a. Press the **Menu** key to move the ▼(triangle icon) so it is positioned over Main Menu. The display show the following -

0-** Operation / Display	
1-** Load and Motor	

- b. Press **▼(Down Arrow**) once to highlight the bottom row.
- c. Press OK, the display changes to -

1-0*	General Settings	
1-1*	Motor Selection	

d. Press **▼**(**Down Arrow**) twice to reach the following display -

1-1* Moto	r Selection
1-2* Moto	r Data

e. Press OK, the following display appears -

NOTE: The number in the bracket may be different from what is shown above.

- f. Press OK and then use the ▲ and ▼ (Up and Down Arrow) keys to scroll to the proper motor horsepower. Press OK again to set the selected hp.
- g. Press **▼**(**Down Arrow**) once, the following display appears -

1-22 Motor Voltage
230V

- h. Press OK to highlight the voltage value. Use the ▲ and ▼ (Up and Down Arrow) keys to select the nameplate voltage. Press OK again to set the selected voltage.
- i. Press ▼(Down Arrow) once to display the following -

1-23 Motor Frequency
60Hz

- j. Press **OK** to highlight the Frequency value and then use the ▲ and ▼ (**Up** and **Down Arrow**) keys to select the nameplate Hz. Press **OK** again to set the selected Hz.
- k. Press ▼(Down Arrow) once to display the following -

1-24 Motor Current	
6.61A	

 Press OK to highlight the Current value and then use the ▲ and ▼ (Up and Down Arrow) keys to select the Max Amps value provided. Press OK again to set the selected Max Amps.

NOTE: The Max Amps is greater than the nameplate value. Check the VFD Unit Parameters (see Tables 21 - 25 on pages 70 - 74) and use the value listed for the given unit in the column labeled "Motor Current Must-Hold Amps". m. Press **▼**(**Down Arrow**) once to display the following -

- n. Press OK to highlight the rpm value and then use the ▲ and ▼ (Up and Down Arrow) keys to select the nameplate rpm. Press OK again to set the selected rpm.
- 6. Entering Parameters for 1-71, 1-73, 1-82, and 1-90:
 - a. Press the **Menu** key to move the ▼(triangle icon) so it is positioned over Main Menu. The display show the following -

- b. Press **▼(Down Arrow)** once to highlight the bottom row.
- c. Press OK, the display changes to -

1-0*	General	Settings
1-1*	Motor S	election

d. Press **▼**(**Down Arrow**) until the following display appears -

1-6* Load Depen. Setting

e. Press OK, the following display appears -

1-71 Start Delay 2.0s

- f. Press OK to highlight the number and then use the ▲ and ▼ (Up and Down Arrow) keys to select the number provided in Tables 21 - 25. Press OK again to set the selected value.
- g. Press **▼(Down Arrow)** twice, the following display appears -

1-73 Flying Start	
[1] Enabled	

- h. Press OK to highlight the number in the bracket and then use the ▲ and ▼ (Up and Down Arrow) keys to select the number provided in Tables 21 25. Press OK again to set the selected value.
- i. Press the **Back** key once, the following display appears -

j. Press ▼(Down Arrow) once, the following display appears -

1-7* Start Adjustments

k. Press OK, the following display appears -

1-80 Function at Stop [0] Coast 1. Press **▼**(**Down Arrow**) once, the following display appears -

1-82 Min Speed for Functio
1.0 Hz

- m. Press OK to highlight the number and then use the ▲ and ▼ (Up and Down Arrow) keys to select the number provided in Tables 21 25. Press OK again to set the selected value.
- n. Press the **Back** key once, the following display appears -

1-7* Start Adjustments	
1–8* Stop Adjustments	

o. Press **▼(Down Arrow)** once, the following display appears -

1-8* Stop Adjustments 1-9* Motor Temperature

p. Press OK, the following display appears -

- q. Press OK to highlight the number in the bracket then use the ▲ and ▼ (Up and Down Arrow) keys to select the number provided in Tables 21
 25. Press OK again to set the selected value.
- 7. Setting References:
 - a. Press the **Menu** key to move the ▼(triangle icon) so it is positioned over Main Menu. The display show the following -

b. Press **▼**(**Down Arrow**) three times, the following display appears -

2-** Brakes	
3-** Reference / Ramps	

c. Press OK, the following display appears -

3-0*	Reference Limits
3–1*	References

d. Press OK again, the following display appears -

3-02 Minimum Reference	
0.000	

NOTE: If the bottom row displays a number other than 0.000, press **OK** and use the \blacktriangle and \blacktriangledown (**Up** and **Down Arrow**) key to select 0.000.

e. Press **▼**(**Down Arrow**) once, the following display appears -

3-03 Maximum Reference
60.000

NOTE: If the bottom row displays a number other than 60.000, press **OK** and use the \blacktriangle and \blacktriangledown (**Up** and **Down Arrow**) keys to select 60.000.

f. Press the **Back** key until the following display appears -

g. Press **▼**(**Down Arrow**) once to move the highlight to the bottom row and then press **OK**. The following display appears -

3-10 Preset Reference	
[0]0.00%	

h. Press **OK** once to highlight the number in the bracket. Press **OK** again; the highlight moves to the current percent value.

Use the \blacktriangle and \blacktriangledown (Up and Down Arrow) keys and the following table to enter the required Preset Reference values.

[0]0.00%	Stop
[1]LL.LL%	Low Speed (see Tables 21 – 25, column labeled "Preset References 3–10[1]" for the proper % for each unit)
[2]MM.MM%	Medium Speed (see Tables 21 –25, column labeled "Preset References 3–10[2]" for the proper % for each unit)
[3]100%	Override (High Speed)
[4]100%	High Speed (100% or close to 100% to achieve the required CFM at high speed)
[5]0.00%	Stop
[6]0.00%	Stop
[7]0.00%	Stop

- 8. Setting the Ramp Time:
 - a. Press the **Back** key until the following display appears -

b. Press **▼(Down Arrow)** twice, the following display appears -

3-1* References	
3-4* Ramp 1	

c. Press OK, the following display appears -

- d. Press **OK** again to highlight the bottom row and use the ▲ and ▼ (**Up** and **Down Arrow**) keys to select 10.00s. Press **OK** again to set the selected Ramp up Time.
- e. Press **▼**(**Down Arrow**) once, the following display appears -

3-42 Ramp 1 Ramp Down Time 3.00s

- f. Press OK again to highlight the bottom row and use the ▲ and ♥ (Up and Down Arrow) keys to select 10.00s. Press OK again to set the selected Ramp Down Time.
- 9. Setting Limits:
 - a. Press the **Back** key until the following display appears -

2-**	Brakes
3-**	Reference / Ramps

b. Press **▼(Down Arrow)** once, the following display appears -

3-** Reference / Ramp	s
4-** Limits / Warnings	

c. Press OK, the following display appears -

4–1* Motor Limits	
4–4* Adj. Warning 2	

d. Press OK again, the following display appears -

e. Press **▼**(**Down Arrow**) once, the following display appears -

4-12 Motor Speed Low Limi... 0.0Hz

f. Press **▼**(**Down Arrow**) again, the following display appears -

4-14 Motor Speed High Limi... 65.0Hz

NOTE: Press **OK** to highlight the Hz value and then use the \blacktriangle and \blacktriangledown (**Up** and **Down Arrow**) keys to enter the required values.

g. Press **▼(Down Arrow)** once, the following display appears -

4-18 Current Limit
110%

NOTE: Press **OK** to highlight the % value and then use the \blacktriangle and \blacktriangledown (**Up** and **Down Arrow**) keys to enter the required value. See Tables 21 - 25 for proper selection of the value for this parameter then press **OK** to set the selected value.

h. Press **▼(Down Arrow)** once, the following display appears -

4-19 Max Output Frequency
65.0Hz

NOTE: Press **OK** to highlight the Hz value and then use the \blacktriangle and \blacktriangledown (**Up** and **Down Arrow**) keys to enter the required values.

- 10. Setting Digital Inputs:
 - a. Press the **Back** key until the following display appears -

b. Press **▼(Down Arrow)** once, the following display appears -

4-** Limits / Warnings 5-** Digital In/Out

c. Press OK, the following display appears -

d. Press **▼**(**Down Arrow**) once to move the highlight to the bottom row and then press **OK**. The following display appears -

- e. Press **▼(Down Arrow)** again. The following display appears -
 - 5-11 Terminal 19 Digital In...

[16] Preset ref bit 0

f. Press **▼**(**Down Arrow**) again. The following display appears -

5-12 Terminal 27 Digital In... [17] Preset ref bit 1

g. Press **▼(Down Arrow)** again. The following display appears -

5-13 Terminal 29 Digital In... [18] Preset ref bit 2

NOTE: By pressing **OK** the number in the bracket can be changed until the desired number appears. Press **OK** again to set the selected value.

11. Setting Analog Inputs:

a. Press the **Back** key until the following display appears -

4-** Limits / Warnings 5-** Digital In/Out

b. Press **▼**(**Down Arrow**) until the following display appears -

5-** Digital In/	Out
6-** Analog In	/Out

c. Press OK, the following display appears -

6-** Analog In/Out	
6-1* Analog Input 53	

d. Press **▼**(**Down Arrow**) once to move the highlight to the bottom row and then press **OK**. The following display appears -

6-10 Terminal 53 Low Voltage
2V

e. Press **▼**(**Down Arrow**) once to move the highlight to the bottom row and then press **OK**. The following display appears -

6-11 Terminal 53 High Voltage [10V]

f. Press **▼**(**Down Arrow**) once to move the highlight to the bottom row and then press **OK**. The following display appears -

6-14 Set Min Reference	
[0 Hz]	

g. Press **▼**(**Down Arrow**) once to move the highlight to the bottom row and then press **OK**. The following display appears -

6-15 Set Max Reference
[60 Hz]

- 12. Setting Reset Mode and RFI Filter:
 - a. Press the **Back** key until the following display appears -

0-** Operation / Display	
1-** Load and Motor	

b. Press **▼**(**Down Arrow**) until the following display appears -

c. Press OK, the following display appears -

d. Press **▼(Down Arrow**) twice. The following display appears -

14-1*	Mains On/Off
14-2*	Reset Functions

e. Press OK, the following display appears -

- f. Press **OK** to highlight the number in the bracket.
- g. Use the ▲ and ▼ (Up and Down Arrow) keys to change the number to 3 for 3 automatic resets and then press OK. The display changes to -

14-20 Reset Mode [3] Automatic reset x 3

h. Press **▼**(**Down Arrow**) once, the following display appears -

14-21 Automatic Restart T
10s

- i. Press OK to highlight the number of seconds and use the ▲ and ▼ (Up and Down Arrow) keys to select 600 seconds. Press OK again to set the selected value.
- j. Press the **Back** key once, the following display appears -

14-1* Mains On/Off	
14-2* Reset Functio	

k. Press **▼(Down Arrow)** twice, the following display appears -

14-4* Energy Optimising 14-5* Environment

1. Press OK, the following display appears -

14-50 RFI Filter [1] On

- m. Press OK to highlight the number in the bracket and use the ▲ and ▼ (Up and Down Arrow) keys to select [0]. Press OK again to set the selected value.
- 13. To Complete Reprogramming:
 - a. Press the **Auto On** key before disconnecting the VFD Remote Keypad from the variable frequency drive.

48LC Size 14
Jnit Parameters -
Table 21 – VFD U

						Regional Settings	Grid Type	Motor Power	Motor Voltage	Motor Frequency (Hz)	Motor Current (Must- Hold Amps)	Motor Nominal Speed (rpm)	Star Delay (Sec)	Flying Start	Min Speed for Function (Hz)	Motor Thermal Protection	Å	Preset Reference	e
Voltage	Unit Size	Motor Option	Motor P/N	VFD Carrier P/N	VFD Mfr P/N	0-03	90-06	1-20	1-22	1-23	1-24	1–25	1-71	1-73	1-82	1-90	3-10 [0]	3-10 [1]	3-10 [2]
208/230V	14	STD	HD58FE654	HK30WA371	131L9796	Ξ	[102]	[10]	230	60	9.2	1735	2.0	E	1.0	[4]	%0	53.43%	79.57%
460V	14	STD	HD58FE654	HK30WA377	131L9864	[1]	[122]	[10]	460	60	4.2	1735	2.0	[1]	1.0	[4]	%0	53.43%	79.57%
575V	14	STD	HD58FE577	HK30WA383	131N0227	Ξ	[132]	[11]	575	60	4.9	1710	2.0	E	1.0	[4]	%0	53.43%	79.57%
208/230V	14	MID	HD60FK658	HK30WA372	131L9797	[1]	[102]	[13]	230	60	13.6	1745	2.0	[1]	1.0	[4]	%0	53.43%	79.57%
460V	14	DIM	HD60FK658	HK30WA379	131L9866	[1]	[122]	[13]	460	60	6.8	1745	2.0	[1]	1.0	[4]	%0	53.43%	79.57%
575V	14	MID	HD60FE576	HK30WA387	134F0217	[1]	[132]	[13]	575	60	6.0	1745	2.0	[1]	1.0	[4]	%0	53.43%	79.57%
208/230V	14	HDIH	HD60FK657	HK30WA373	131L9798	[1]	[102]	[14]	230	60	21.2	1760	2.0	[1]	1.0	[4]	%0	53.43%	79.57%
460V	14	HIGH	HD60FK657	HK30WA380	131L9867	[1]	[122]	[14]	460	60	9.7	1760	2.0	[1]	1.0	[4]	%0	53.43%	79.57%
575V	14	нын	HD60FL576	HK30WA384	131N0229	[1]	[132]	[14]	575	60	7.2	1745	2.0	[1]	1.0	[4]	%0	53.43%	79.57%
208/230V	14	ULTRA	HD62FK654	HK30WA374	131L9799	[1]	[102]	[15]	230	60	28.0	1760	2.0	[1]	1.0	[4]	%0	53.43%	79.57%
460V	14	ULTRA	HD62FK654	HK30WA381	131L9868	[1]	[122]	[15]	460	60	13.7	1760	2.0	[1]	1.0	[4]	0%	53.43%	79.57%
575V	14	ULTRA	HD62FL576	HK30WA384	131N0229	[1]	[132]	[15]	575	60	8.9	1750	2.0	[1]	1.0	[4]	%0	53.43%	79.57%

RFI Filter	14-50	0	[o]	[0]	[[6	[0]	[0]	[0]	[[6	[0]	[
		2	2	2	[0]	[0]	0	0]	0]	[o]	[0]	<u>0</u>	[o]
Auto. Restart Time (S)	14-21	600	600	600	600	600	600	600	600	600	600	600	600
Reset Mode	14-20	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[2]
Terminal 53 High Reference	6–15	[60]	[09]	[09]	[09]	[09]	[09]	[09]	[09]	[09]	[09]	[09]	[09]
Terminal 53 Low Reference	6-14	0	0	0	0	0	0	0	0	0	0	0	0
Terminal 53 High Voltage	6 - 11	[10]	[10]	[10]	[10]	[01]	[10]	[01]	[01]	[10]	[01]	[10]	[01]
Terminal 53 Low Voltage	610	N	N	N	N	2	2	2	2	2	2	2	2
Terminal 29 Digital Input	5-13	[18]	[18]	[18]	[18]	[18]	[18]	[18]	[18]	[18]	[18]	[18]	[18]
Terminal 27 Digital Input	5-12	[17]	[17]	[17]	[17]	[21]	[11]	[21]	[11]	[17]	[21]	[17]	[11]
Terminal 19 Digital Input	5-11	[16]	[16]	[16]	[16]	[91]	[16]	[91]	[16]	[16]	[16]	[16]	[91]
Terminal 18 Digital Input	5-10	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]
Current Limit	418	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Ramp Down Time (Sec)	3-42	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Ramp Up Time (Sec)	3-41	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	3-10 [7]	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
(cont)	3-10 [6]	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
Preset Reference (cont)	3–10 [5]	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
Preset	3-10 [4]	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	3-10 [3]	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	Motor Option	STD	STD	STD	ШM	ШM	ШМ	HIGH	HIGH	HIGH	ULTRA	ULTRA	ULTRA
	Unit Size	14	14	14	41	14	14	14	14	14	14	14	14
	Voltage	208/230V	460V	575V	208/230V	460V	575V	208/230V	460V	575V	208/230V	460V	575V

48LC Size 17
Unit Parameters -
Table 22 – VFD

						Regional Settings	Grid Type	Motor Power	Motor Voltage	Motor Frequency (Hz)	Motor Current (Must-Hold Amps)	Motor Nominal Speed (rpm)	Star Delay (Sec)	Flying Start	Min Speed for Function (Hz)	Motor Thermal Protection	Pre	Preset Reference	۵ د
Voltage	Unit Size	Motor Option	Motor P/N	VFD Carrier P/N	VFD Mfr P/N	0-03	90-06	1-20	1-22	1-23	1-24	1-25	1-71	1-73	1-82	1-90	3–10 [0]	3-10 [1]	3-10 [2]
208/230V	17	STD	HD58FE654	HK30WA371	131L9796	Ξ	[102]	[10]	230	60	9.2	1735	2.0	Ξ	1.0	[4]	%0	56.64%	82.40%
460V	17	STD	HD58FE654	HK30WA377	131L9864	[1]	[122]	[10]	460	60	4.2	1735	2.0	[1]	1.0	[4]	%0	56.64%	82.40%
575V	17	STD	HD58FE577	HK30WA383	131N0227	Ξ	[132]	[11]	575	60	4.9	1710	2.0	[Η]	1.0	[4]	%0	56.64%	82.40%
208/230V	17	MID	HD60FK657	HK30WA373	131L9798	[E]	[102]	[14]	230	60	21.2	1760	2.0	[1]	1.0	[4]	%0	56.64%	82.40%
460V	17	MID	HD60FK657	HK30WA380	131L9867	[1]	[122]	[14]	460	60	9.7	1760	2.0	[1]	1.0	[4]	%0	56.64%	82.40%
575V	17	DIM	HD60FL576	HK30WA384	131N0229	Ξ	[132]	[14]	575	60	7.2	1745	2.0	[1]	1.0	[4]	%0	56.64%	82.40%
208/230V	17	HIGH	HD62FK654	HK30WA374	131L9799	[1]	[102]	[15]	230	60	28.0	1760	2.0	[1]	1.0	[4]	%0	56.64%	82.40%
460V	17	HIGH	HD62FK654	HK30WA381	131L9868	[1]	[122]	[15]	460	60	13.7	1760	2.0	[1]	1.0	[4]	%0	56.64%	82.40%
575V	17	ндн	HD62FL576	HK30WA384	131N0229	[1]	[132]	[15]	575	60	8.9	1750	2.0	[1]	1.0	[4]	%0	56.64%	82.40%
208/230V	17	ULTRA	HD64FK654	HK30WA375	131L9800	[1]	[102]	[16]	230	60	37.3	1755	2.0	[1]	1.0	[4]	%0	56.64%	82.40%
460V	17	ULTRA	HD64FK654	HK30WA386	131L9869	[1]	[122]	[16]	460	60	16.9	1755	2.0	[1]	1.0	[4]	%0	56.64%	82.40%
575V	17	ULTRA	HD64FL576	HK30WA388	131N0233	[1]	[132]	[16]	575	60	12.6	1755	2.0	[1]	1.0	[4]	%0	56.64%	82.40%

				Preset	Preset Reference (cont)	(cont)		Ramp Up Time (Sec)	Ramp Down Time (Sec)	Current Limit	Terminal 18 Digital Input	Terminal 19 Digital Input	Terminal 27 Digital Input	Terminal 29 Digital Input	Terminal 53 Low Voltage	Terminal 53 High Voltage	Terminal 53 Low Reference	Terminal 53 High Reference	Reset Mode	Auto. Restart Time (S)	RFI Filter
Voltage	Unit Size	Motor Option	3-10 [3]	3-10 [4]	3–10 [5]	3-10 [6]	3-10 [7]	3-41	3-42	418	5-10	5-11	5-12	5-13	6–10	6-11	6-14	6–15	14-20	14-21	14-50
208/230V	17	STD	100%	100%	%0	%0	%0	10.00	10.00	100%	[8]	[16]	[17]	[18]	0	[10]	0	[60]	[3]	600	[0]
460V	17	STD	100%	100%	%0	%0	%0	10.00	10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[60]	[3]	600	[0]
575V	17	STD	100%	100%	%0	%0	%0	10.00	10.00	100%	[8]	[16]	[17]	[18]	0	[10]	0	[60]	[3]	600	[0]
208/230V	17	QIW	100%	100%	%0	%0	%0	10.00	10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[60]	[3]	600	[0]
460V	17	QIW	100%	100%	%0	%0	%0	10.00	10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[09]	[3]	600	[0]
575V	17	QIW	100%	100%	%0	%0	%0	10.00	10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[60]	[3]	600	[0]
208/230V	17	ндн	100%	100%	%0	%0	%0	10.00	10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[60]	[3]	600	[0]
460V	17	HIGH	100%	100%	%0	%0	%0	10.00	10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[09]	[3]	600	[0]
575V	17	ндн	100%	100%	%0	%0	%0	10.00	10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[60]	[3]	600	[0]
208/230V	17	ULTRA	100%	100%	%0	%0	%0	10.00	10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[60]	[3]	600	[0]
460V	17	ULTRA	100%	100%	0%	%0	%0	10.00	10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[60]	[3]	600	[o]
575V	17	ULTRA	100%	100%	%0	%0	%0	10.00	10.00	100%	[8]	[16]	[11]	[18]	2	[10]	0	[09]	[2]	600	[0]

Table 23 – VFD Unit Parameters - 48LC Size 20

Working <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>Regional Settings</th><th>Grid Type</th><th>Motor Power</th><th>Motor Voltage</th><th>Motor Frequency (Hz)</th><th>Motor Current (Must-Hold Amps)</th><th>Motor Nominal Speed (rpm)</th><th>Star Delay (Sec)</th><th>Flying Start</th><th>Min Speed for Function (Hz)</th><th>Motor Thermal Protection</th><th>-L</th><th>Preset Reference</th><th>e</th></t<>							Regional Settings	Grid Type	Motor Power	Motor Voltage	Motor Frequency (Hz)	Motor Current (Must-Hold Amps)	Motor Nominal Speed (rpm)	Star Delay (Sec)	Flying Start	Min Speed for Function (Hz)	Motor Thermal Protection	-L	Preset Reference	e
20STDHoboFedeHistowardF11F11F12F11F10F10F11<	Voltage	Unit Size	Motor Option	Motor P/N	VFD Carrier P/N	VFD Mfr P/N	0-03	90-06	1-20	1-22	1-23	1-24	1-25	1-71	1-73	1-82	1-90	3–10 [0]	3-10 [1]	3-10 [2]
20 STD HobeFeed Howarse S11.066 [1] [2] [1] 460 60 5.4 1750 2.0 [1] 1.0 [4] 0% 5.5.% 20 STD HobeFeed HSOWARS 1310/27 [1] [132] [1] 575 60 4.9 1710 2.0 [1] 1.0 [4] 0% 5.5.% 20 MD HobeFeed HSOWARS 1110/80 [1] [12] [13] [14] 575 60 2.1 170 2.0 [1] 1.0 1.0 0% 5.5.% 20 MD HobeFeed HSOWARS 1110/80 [1] [12] 141 200 2.0 110 10 <td>208/230V</td> <td>20</td> <td>STD</td> <td>HD60FE656</td> <td>HK30WA372</td> <td>131L9797</td> <td>Ξ</td> <td>[102]</td> <td>[11]</td> <td>230</td> <td>60</td> <td>11.7</td> <td>1750</td> <td>2.0</td> <td>Ξ</td> <td>1.0</td> <td>[4]</td> <td>%0</td> <td>52.57%</td> <td>61.63%</td>	208/230V	20	STD	HD60FE656	HK30WA372	131L9797	Ξ	[102]	[11]	230	60	11.7	1750	2.0	Ξ	1.0	[4]	%0	52.57%	61.63%
20 STD HD56FE577 HK30WA383 131N0227 [1] [132] [11] 575 60 4.9 1710 2.0 [1] 1.0 [4] 0% 2.57% 20 MD HD60FK657 HK30WA373 131U576 [1] [102] [14] 230 60 2.12 1760 2.0 [1] 1.0 [4] 0% 2.57% 20 MD HD60FK657 HK30WA380 131U879 [1] [122] [14] 575 60 7.2 1745 2.0 [1] 1.0 [4] 0% 2.57% 20 HUH HD60FK56 HK30WA384 131U808 [1] [122] [14] 575 60 7.2 1745 2.0 [1] 1.0 [4] 0% 2.57% 20 HUH HD60FL576 HK30WA384 131U808 [1] [122] [15] 230 20 [1] 1.0 [4] 0% 2.57% 20	460V	20	STD	HD60FE656	HK30WA378	131L9865	E	[122]	[11]	460	60	5.4	1750	2.0	E	1.0	[4]	%0	52.57%	61.63%
20 MID Hoborkes Hesowass 131978 (1) (10) (10) (11) (10) (11) (10) (11) (10) (11) (10) (11) (12) <	575V	20	STD	HD58FE577	HK30WA383	131N0227	Ξ	[132]	[11]	575	60	4.9	1710	2.0	Ξ	1.0	[4]	%0	52.57%	61.63%
20 MID HB06FK657 HK30W3360 131L967 [14] 460 60 9.7 1760 2.0 [1] 1.0 [4] 0% 5.5.7% 20 MID HB06FL56 HK30W3364 131L929 [1] [12] [14] 575 60 7.2 1745 2.0 [1] 1.0 1.0 [4] 0% 5.5.7% 20 HIGH HD6FK654 HK30W3364 [31L9799 [1] [102] [15] 230 60 28.0 1760 2.0 [1] 1.0 [4] 0% 5.5.7% 20 HIGH HD62FK654 HK30W3364 131L9868 [1] [122] [15] 230 60 1760 2.0 [1] 1.0 [4] 0% 5.5.7% 20 HIGH HD62FK654 HK30W3364 131L9806 [1] [122] [15] 575 60 2.0 [1] 1.0 [4] 0% 5.5.7% 20 H	208/230V	20	MID	HD60FK657	HK30WA373	131L9798	Ξ	[102]	[14]	230	60	21.2	1760	2.0	Ξ	1.0	[4]	%0	52.57%	61.63%
20 MID Hb06FL576 Hx30W3384 131N0229 [13] [14] 575 60 72 1745 2.0 [1] 10 [10] 61 63.57% 20 HIGH Hb02FK654 Hx30W334 131L9799 [1] [102] [15] 230 60 28.0 1760 2.0 [1] 1.0 64 55.57% 20 HIGH Hb02FK654 Hx30W331 131L968 [1] [122] [15] 240 28.0 13.7 1760 2.0 [1] 1.0 64 55.57% 20 HIGH Hb02FK634 Hx30W3384 131L9800 [1] [122] [15] 460 60 13.7 1760 2.0 [1] 1.0 64 55.57% 20 ULTA Hb02FK634 Hx30W3384 13110200 [1] [122] [15] 230 60 37.3 1755 2.0 [1] 1.0 [4] 0% 55.57% 20	460V	20	MID	HD60FK657	HK30WA380	131L9867	[1]	[122]	[14]	460	60	9.7	1760	2.0	[1]	1.0	[4]	%0	52.57%	61.63%
20 HGH HD62FK664 HX30W374 131L979 [10]	575V	20	DIM	HD60FL576	HK30WA384	131N0229	Ξ	[132]	[14]	575	60	7.2	1745	2.0	Ξ	1.0	[4]	%0	52.57%	61.63%
20 HGH HD62FK664 HK30WA381 131L9668 [13] [15] 460 60 13.7 1760 2.0 [1] 1.0 [4] 0% 52.5% 20 HGH HD62FK64 HK30WA384 131N0229 [1] [122] [15] 575 60 8.9 1750 2.0 [1] 1.0 [4] 0% 52.5% 2 0.0 HCH HD64FK64 HK30WA375 131U020 [1] [102] [16] 230 8.9 1750 2.0 [1] 1.0 [4] 0% 52.5% 2 0.1TRA HD64FK64 HK30WA375 131L9800 [1] [16] 230 60 37.3 1755 2.0 [1] 1.0 [4] 0% 52.5% 2 0.1TRA HD64FK64 HK30WA386 [1] [122] [16] 230 60 1755 2.0 [1] 1.0 [4] 0% 52.5% 2 0.1TRA <td>208/230V</td> <td>20</td> <td>HIGH</td> <td>HD62FK654</td> <td>HK30WA374</td> <td>131L9799</td> <td>[1]</td> <td>[102]</td> <td>[15]</td> <td>230</td> <td>60</td> <td>28.0</td> <td>1760</td> <td>2.0</td> <td>[1]</td> <td>1.0</td> <td>[4]</td> <td>%0</td> <td>52.57%</td> <td>61.63%</td>	208/230V	20	HIGH	HD62FK654	HK30WA374	131L9799	[1]	[102]	[15]	230	60	28.0	1760	2.0	[1]	1.0	[4]	%0	52.57%	61.63%
20 HGH HD62FL576 HK30W3384 131N0229 [13] [15] 575 60 89 1750 2.0 [1] 1.0 [4] 0% 55.5% 20 ULTRA HD64FK654 HK30W3375 131L9800 [1] [10] 230 60 37.3 1755 2.0 [1] 1.0 [4] 0% 55.5% 20 ULTRA HD64FK654 HK30W336 [1] [10] [10] 200 60 37.3 1755 2.0 [1] 0,0 65.57% 20 ULTRA HD64FK654 HK30W3368 [1] [122] [16] 460 60 16.9 1755 2.0 [1] 1.0 [4] 0% 55.57% 20 ULTRA HD64FL576 HK30W338 13110233 [1] [132] [16] 575 60 16.6 2.0 [1] 1.0 [4] 0% 55.57%	460V	20	HIGH	HD62FK654	HK30WA381	131L9868	E	[122]	[15]	460	60	13.7	1760	2.0	E	1.0	[4]	%0	52.57%	61.63%
20 ULTRA Hb04FK654 Hk30W3375 131L9800 [1] [102] [16] 230 60 37.3 1755 2.0 [1] 1.0 [4] 0% 52.5% 20 ULTRA Hb64FK654 Hk30W3365 [31L9800 [1] [122] [16] 460 60 37.3 1755 2.0 [1] 1.0 [4] 0% 52.5% 20 ULTRA Hb64FL576 Hk30W386 [3] [1] [122] [16] 575 60 1755 2.0 [1] 1.0 [4] 0% 52.5% 20 ULTRA Hb64FL576 Hk30W388 131N0233 [1] [132] [16] 575 60 12.6 1755 2.0 [1] 1.0 [4] 0% 52.57%	575V	20	нюн	HD62FL576	HK30WA384	131N0229	[1]	[132]	[15]	575	60	8.9	1750	2.0	[1]	1.0	[4]	%0	52.57%	61.63%
20 ULTRA HD64FK654 HK30WA386 131L9869 [1] [122] [16] 460 60 16.9 1755 2.0 [1] 1.0 [4] 0% 52.57% 20 ULTRA HD64FL576 HK30WA386 131N0233 [1] [132] [16] 575 60 12.6 1755 2.0 [1] 1.0 [4] 0% 52.57% 20 ULTRA HD64FL576 HK30WA388 131N0233 [1] [132] [16] 575 60 12.6 1755 2.0 [1] 1.0 [4] 0% 52.57%	208/230V	20	ULTRA	HD64FK654	HK30WA375	131L9800	[1]	[102]	[16]	230	60	37.3	1755	2.0	[1]	1.0	[4]	%0	52.57%	61.63%
20 ULTRA HD64FL576 HK30WA388 131N0233 [1] [132] [16] 575 60 12.6 17.5 2.0 [1] 1.0 [4] 0% 52.57%	460V	20	ULTRA	HD64FK654	HK30WA386	131L9869	E	[122]	[16]	460	60	16.9	1755	2.0	[1]	1.0	[4]	%0	52.57%	61.63%
	575V	20	ULTRA	HD64FL576	HK30WA388	131N0233	[1]	[132]	[16]	575	60	12.6	1755	2.0	[1]	1.0	[4]	%0	52.57%	61.63%

er	20	_	_	_	_	_	_	_	_	_	_	_]
Filter	14-50	0	[0]	[0]	[0]	[0]	0	[o]	[o]	[o]	0	[0]	[o]
Auto. Restart Time (S)	14 - 21	600	600	600	600	600	600	600	600	600	600	600	600
Reset Mode	14-20	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]	[3]
Terminal 53 High Reference	6–15	[60]	[09]	[09]	[09]	[09]	[09]	[09]	[09]	[09]	[09]	[09]	[09]
Terminal 53 Low Reference	6-14	0	0	0	0	0	0	0	0	0	0	0	0
Terminal 53 High Voltage	6-11	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]
Terminal 53 Low Voltage	6-10	N	2	2	0	2	2	2	2	2	2	2	2
Terminal 29 Digital Input	5-13	[18]	[18]	[18]	[18]	[18]	[18]	[18]	[18]	[18]	[18]	[18]	[18]
Terminal 27 Digital Input	5-12	[17]	[17]	[17]	[17]	[17]	[17]	[17]	[17]	[17]	[17]	[17]	[17]
Terminal 19 Digital Input	5-11	[16]	[16]	[16]	[16]	[16]	[16]	[16]	[16]	[16]	[16]	[16]	[16]
Terminal 18 Digital Input	5-10	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]
Current Limit	4-18	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Ramp Down Time (Sec)	3-42	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Ramp Up Time (Sec)	3-41	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	3-10 [7]	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
cont)	3-10 [6]	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
Preset Reference (cont)	3-10 [5]	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0	%0
Preset	3-10 [4]	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	3-10 [3]	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
	Motor Option	STD	STD	STD	ШМ	ШМ	ШМ	HIGH	HIGH	ндн	ULTRA	ULTRA	ULTRA
	Unit Size	20	20	20	20	20	20	20	20	20	20	20	20
	Voltage	208/230V	460V	575V									
8 LC Size 24													

\$													
1													
Unit Parameters													
- VFD													
24-													
Table													

Unit Motor Size Option 24 STD 24 STD 24 STD	Motor P/N			Regional Settings	Grid Type	Motor Power	wotor Voltage	Frequency (Hz)	Current (Must-Hold Amps)	Nominal Speed (rpm)	Star Delay (Sec)	Flying Start	for Function (Hz)	Thermal Protection	L.	Preset Reference	<u> </u>
OV 24 STD 24 STD 24 24 STD		VFD Carrier P/N	VFD Mfr P/N	0-03	90-0	1-20	1-22	1-23	1-24	1-25	1-71	1-73	1-82	1-90	3–10 [0]	3-10 [1]	3-10 [2]
24 STD 24 STD	HD60FK657	HK30WA373	131L9798	Ξ	[102]	[14]	230	60	21.2	1760	2.0	[1]	1.0	[4]	%0	52.33%	64.48%
STD	HD60FK657	HK30WA380	131L9867	Ξ	[122]	[14]	460	60	9.7	1760	2.0	[1]	1.0	[4]	%0	52.33%	64.48%
	HD60FL576	HK30WA384	131N0229	Ξ	[132]	[14]	575	60	7.2	1745	2.0	[1]	1.0	[4]	%0	52.33%	64.48%
208/230V 24 MID HE	HD62FK654	HK30WA374	131L9799	[1]	[102]	[15]	230	60	28.0	1760	2.0	[1]	1.0	[4]	%0	52.33%	64.48%
460V 24 MID HC	HD62FK654	HK30WA381	131L9868	E	[122]	[15]	460	60	13.7	1760	2.0	[1]	1.0	[4]	%0	52.33%	64.48%
575V 24 MID HE	HD62FL576	HK30WA384	131N0229	E	[132]	[15]	575	60	8.9	1750	2.0	[1]	1.0	[4]	%0	52.33%	64.48%
208/230V 24 HIGH HE	HD64FK654	HK30WA375	131L9800	[1]	[102]	[16]	230	60	37.3	1755	2.0	[1]	1.0	[4]	%0	52.33%	64.48%
460V 24 HIGH HC	HD64FK654	HK30WA386	131L9869	E	[122]	[16]	460	60	16.9	1755	2.0	[1]	1.0	[4]	%0	52.33%	64.48%
575V 24 HIGH HI	HD64FL576	HK30WA388	131N0233	[1]	[132]	[16]	575	60	12.6	1755	2.0	[1]	1.0	[4]	%0	52.33%	64.48%

Preset Reference (cont)	Preset Reference (cont)	Preset Reference (cont)	Preset Reference (cont)	Reference (cont)	(cont)			Ramp Up Time (Sec)	Ramp Down Time (Sec)	Current Limit	Terminal 18 Digital Input	Terminal 19 Digital Input	Terminal 27 Digital Input	Terminal 29 Digital Input	Terminal 53 Low Voltage	Terminal 53 High Voltage	Terminal 53 Low Reference	Terminal 53 High Reference	Reset Mode	Auto. Restart Time (S)	RFI Filter
Unit Motor 3-10 [3] 3-10 [4] 3-10 [5] 3-10 [6] 3-10 [7] 3-41 3	3-10 [3] 3-10 [4] 3-10 [5] 3-10 [6] 3-10 [7] 3-41	3-10 [4] 3-10 [5] 3-10 [6] 3-10 [7] 3-41	3-10 [5] 3-10 [6] 3-10 [7] 3-41	3-10 [6] 3-10 [7] 3-41	3-10 [7] 3-41	3-41		.,	3-42	4-18	5-10	5-11	5-12	5-13	6-10	6-11	6-14	6–15	14-20	14-21	14-50
24 STD 100% 100% 0% 0% 10.00	100% 100% 0% 0%	100% 0% 0% 0%	%0 %0 %0	%0 %0	%0		10.00		10.00	100%	[8]	[16]	[17]	[18]	N	[10]	0	[60]	[3]	600	[0]
24 STD 100% 100% 0% 0% 0% 10.00	100% 100% 0% 0% 0%	100% 0% 0% 0%	%0 %0 %0	%0 %0	%0		10.00		10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[09]	[2]	600	[0]
24 STD 100% 100% 0% 0% 10.00	100% 100% 0% 0% 0%	100% 0% 0% 0%	%0 %0 %0	%0 %0	%0		10.00		10.00	100%	[8]	[16]	[17]	[18]	N	[10]	0	[60]	[3]	600	[0]
24 MID 100% 100% 0% 0% 0% 10.00	100% 100% 0% 0% 0%	100% 0% 0% 0%	0% 0% 0%	%0 %0	%0		10.00		10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[60]	[3]	600	[0]
24 MID 100% 100% 0% 0% 0% 10.00	100% 0% 0% 0%	100% 0% 0% 0%	%0 %0 %0	%0 %0	%0		10.00		10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[60]	[3]	600	[0]
24 MID 100% 100% 0% 0% 0% 10.00	100% 100% 0% 0% 0%	100% 0% 0% 0%	%0 %0 %0	%0 %0	%0		10.00		10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[09]	[3]	600	[0]
24 HIGH 100% 100% 0% 0% 10.00	100% 100% 0% 0% 0%	100% 0% 0%	0% 0% 0%	%0 %0	%0		10.00		10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[60]	[3]	600	[0]
24 HIGH 100% 100% 0% 0% 10.00	100% 100% 0% 0% 0%	100% 0% 0% 0%	0% 0% 0%	%0 %0	%0		10.00	-	10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[60]	[3]	600	[o]
24 HIGH 100% 100% 0% 0% 10.00	100% 100% 0% 0% 0%	100% 0% 0% 0%	0% 0% 0%	%0 %0	%0		10.00		10.00	100%	[8]	[16]	[17]	[18]	2	[10]	0	[09]	[3]	600	[0]

26
à
Ň
S
\overline{c}
3
8
4
S
- 5
et
me
a
ar
2
Ξ
Ē
5
-
F
H
1
S
C I
ļe
q
Ë

2 1-23 1-24 1-25 1-71 1-73 1 60 21:2 1760 2.0 [1] 1 60 9.7 1760 2.0 [1] 1 60 9.7 1760 2.0 [1] 1 60 7.2 1760 2.0 [1] 1 60 7.2 1760 2.0 [1] 1 60 13.7 1760 2.0 [1] 1 60 8.9 1750 2.0 [1] 1 60 3.3 1755 2.0 [1] 1	1-22 230 460 575 230 460	1-20 [14] [14] [14] [14]	0-06 [102] [122] [132]	0-03	VFD 0-03 Mir P/N 13119798 [1] 1311032867 [1] 13110329	0-03 [1] [1] [1]	VFD 0-03 Mir P/N 131L9798 [1] 131L9867 [1] 131L0229	Motor Motor P/N VFD VFD 0-03 Option Motor P/N Carrier P/N Mir P/N 0-03 STD HD60FK657 HK30WA373 131L9798 [1] STD HD60FK657 HK30WA380 131L9768 [1] STD HD60FL576 HK30WA384 131N0229 [1]	Motor P/N VFD 0-03 Mator P/N Carrier P/N Mfr P/N 0-03 HD60FK657 HK30WA373 131L9798 [1] HD60FK657 HK30WA380 131L9867 [1] HD60FK556 HK30WA384 131N0229 [1]
60 21.2 1760 2.0 [1] 60 9.7 1760 2.0 [1] 60 9.7 1760 2.0 [1] 60 7.2 1745 2.0 [1] 60 28.0 1760 2.0 [1] 60 28.0 1760 2.0 [1] 60 13.7 1760 2.0 [1] 60 8.9 1750 2.0 [1] 60 37.3 1755 2.0 [1]	230 460 575 230 460	4 4 4	[102] [1 [122] [⁻ [132] [⁻	ΞΞΞ	131L9798 [1] 131L9667 [1] 131N0229 [1]	131L9798 [1] 131L9798 [1] 131L9205 [1]	HK30WA373 131L9796 [1] HK30WA380 131L9867 [1] HK30WA384 131N0229 [1]	HD60FK657 HK30WA373 131L978 [1] HD60FK657 HK30WA380 131L9867 [1] HD60FL576 HK30WA384 131N0229 [1]	STD HD60FK657 HK30WA373 131L9798 [1] STD HD60FK657 HK30WA380 131L9867 [1] STD HD60FK657 HK30WA384 131L9867 [1]
60 9.7 1760 2.0 [1] 60 7.2 1745 2.0 [1] 60 7.2 1745 2.0 [1] 60 28.0 1760 2.0 [1] 60 28.0 1760 2.0 [1] 60 13.7 1760 2.0 [1] 60 8.9 1750 2.0 [1] 737.3 1755 2.0 [1] 1	460 575 230 460	1 1 2	[122]	ΞΞ	131L9867 [1] 131N0229 [1]	131L9867 [1] 131N0229 [1]	HK30WA380 131L9867 [1] HK30WA384 131N0229 [1]	HD60FK657 HK30WA380 131L9867 [1] HD60FL576 HK30WA384 131N0229 [1]	STD HD60FK657 HK30WA380 131L9867 [1] STD HD60FL576 HK30WA384 131N0229 [1]
60 7.2 1745 2.0 [1] . 60 28.0 1760 2.0 [1] . 60 28.0 1760 2.0 [1] . 60 13.7 1760 2.0 [1] . 60 8.9 1750 2.0 [1] . 60 37.3 1755 2.0 [1] .	575 230 460	14	[132]	[5]	131N0229 [1]	131N0229 [1]	HK30WA384 131N0229 [1]	HD60FL576 HK30WA384 131N0229 [1]	STD HD60FL576 HK30WA384 131N0229 [1]
60 28.0 1760 2.0 [1] . 60 13.7 1760 2.0 [1] . 60 8.9 1750 2.0 [1] . 60 8.9 1750 2.0 [1] . 60 37.3 1755 2.0 [1] .	230 460	5							
60 13.7 1760 2.0 [1] . 60 8.9 1750 2.0 [1] . 60 8.9 1750 2.0 [1] .	460	2	[102]) [1] [102]	131L9799 [1]	[1]	131L9799 [1]	HK30WA374 131L9799 [1]	HD62FK654 HK30WA374 131L9799 [1]
60 8.9 1750 2.0 [1] . 60 37.3 1755 2.0 [1] .		[15]	[122]	[1]	_	[1]	131L9868 [1]	HK30WA381 131L9868 [1]	HD62FK654 HK30WA381 131L9868 [1]
60 37.3 1755 2.0 [1] -	575	[15]	[132]	[1]	131N0229 [1]	[1]	131N0229 [1]	HK30WA384 131N0229 [1]	HD62FL576 HK30WA384 131N0229 [1]
	230	[16]	[102]	[1]	131L9800 [1]	[1]	131L9800 [1]	HK30WA375 131L9800 [1]	HD64FK654 HK30WA375 131L9800 [1]
] 460 60	[16]	[122]	[1]	131L9869 [1]	[1]	131L9869 [1]	HK30WA386 131L9869 [1]	HD64FK654 HK30WA386 131L9869 [1]
575 60 12.6 1755 2.0 [1] 1.0	575	[16]	[132]	Ξ	131N0233 [1]	Ξ	131N0233 [1]	HK30WA388 131N0233 [1]	HD64FL576 HK30WA388 131N0233 [1]

RFI Filter	14-50	0]	[0]	[0]	[0]	[0]	[0]	[0]	[o]	[0]
Auto. Restart Time (S)	14-21	600	600	600	600	600	600	600	600	600
Reset Mode	14-20	[3]	[3]	[3]	[3]	[3]	[3]	[2]	[3]	[2]
Terminal 53 High Reference	6–15	[60]	[60]	[60]	[60]	[60]	[60]	[09]	[60]	[09]
Terminal 53 Low Reference	6-14	0	0	0	0	0	0	0	0	0
Terminal 53 High Vottage	6- 11	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]
Terminal 53 Low Voltage	6-10	N	N	N	2	N	2	2	2	2
Terminal 29 Digital Input	5-13	[18]	[18]	[18]	[18]	[18]	[18]	[81]	[18]	[81]
Terminal 27 Digital Input	5-12	[17]	[17]	[17]	[11]	[17]	[11]	[21]	[11]	[21]
Terminal 19 Digital Input	5-11	[16]	[16]	[16]	[16]	[16]	[16]	[91]	[16]	[91]
Terminal 18 Digital Input	5-10	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]	[8]
Current Limit	4-18	100%	100%	100%	100%	100%	100%	100%	100%	100%
Ramp Down Time (Sec)	3-42	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Ramp Up (Sec)	3-41	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
	3-10 [7]	%0	%0	%0	%0	%0	%0	%0	%0	%0
(cont)	3-10 [6]	%0	%0	%0	%0	%0	%0	%0	%0	%0
Preset Reference (cont)	3–10 [5]	%0	%0	%0	%0	%0	%0	%0	%0	%0
Preset	3–10 [4]	100%	100%	100%	100%	100%	100%	%001	100%	%001
	3-10 [3]	100%	100%	100%	100%	100%	100%	100%	100%	100%
	Motor Option	STD	STD	STD	MID	MID	MID	нюн	HIGH	HIGH
	Unit Size	26	26	26	26	26	26	26	26	26
	Voltage	208/230V	460V	575V	208/230V	460V	575V	208/230V	460V	575V

Data
Sizing
Breaker
HACR I
or
Fuse
Wire/
Unit
26 –
Table

					Ź	NO C.O. or UNPW	NPWR C.O.							w/ PWRD C.O.	D C.O.			
				NO P.E.	Ë.		2	w/ P.E. (pwrd fr/ unit)	1 fr/ unit)			NO PE	ui		5	w/ P.E. (pwrd fr/ unit)	l fr/ unit)	
48LC UNIT	NOM. V-Ph-Hz	IFM TYPE	C.	MAX FUSE or	DISC. SIZE	SIZE	V UM	MAX FUSE or	DISC.	SIZE	V	MAX FUSE or	DISC.	SIZE	Č.	MAX FUSE or	DISC. SIZE	SIZE
			MCA	HACR BRKR	FLA	LRA	MCA	HACR BRKR	FLA	LRA	MCA	HACR BRKR	FLA	LRA	MCA	HACR BRKR	FLA	LRA
		STD	59.1/58.3	80/80	61/60	343	70.9/70.1	06/06	75/74	363	63.9/63.1	80/80	67/66	348	75.7/74.9	06/06	80/79	368
	208/	MED	64.1/63.2	80/80	67/66	378	75.9/75.0	06/06	81/80	398	68.9/68.0	06/06	73/72	383	80.7/79.8	100/100	86/85	403
	230-3-60	нідн	7.1.7	06	76	382	83.5	100	89	402	76.5	06	81	387	88.3	100	95	407
		ULTRA	79.7	100	84	456	91.5	100	97	476	84.5	100	89	461	96.3	110	103	481
		STD	31.3	40	33	167	37.5	45	40	179	33.5	40	35	169	39.7	50	42	181
	0000	MED	33.9	45	36	184	40.1	50	43	196	36.1	45	38	186	42.3	50	45	198
4	460-3-60	HIGH	37.2	45	40	186	43.4	50	47	198	39.4	50	42	188	45.6	50	49	200
		SUPER	41.8	50	44	223	48.0	60	51	235	44.0	50	47	225	50.2	60	54	237
		STD	24.4	30	26	119	29.2	35	31	127	26.1	30	28	121	30.9	35	33	129
		MED	26.1	30	28	133	30.9	35	33	141	27.8	30	30	135	32.6	40	35	143
	09-5-6/6	нідн	27.1	30	29	131	31.9	35	34	139	28.8	35	31	133	33.6	40	36	141
		ULTRA	29.0	35	31	158	33.8	40	36	166	30.7	35	33	160	35.5	40	38	168
		STD	67.4/66.6	06/06	70/69	371	79.2/78.4	100/100	83/82	391	72.2/71.4	06/06	75/74	376	84.0/83.2	100/100	89/88	396
	208/	MED	80.0	100	84	410	91.8	100	98	430	84.8	100	06	415	96.6	110	103	435
	230-3-60	HIGH	86.9	100	92	484	98.7	125	105	504	91.7	100	97	489	103.5	125	111	509
		ULTRA	98.5	125	103	524	110.3	125	116	544	103.3	125	108	529	115.1	150	122	549
		STD	34.8	45	36	193	41.0	50	43	205	37.0	45	39	195	43.2	50	46	207
1	00 0 000	MED	40.7	50	43	212	46.9	60	50	224	42.9	50	46	214	49.1	60	53	226
2	400-3-00	HIGH	44.9	50	48	249	51.1	60	55	261	47.1	60	50	251	53.3	60	57	263
		ULTRA	48.9	60	51	269	55.1	60	59	281	51.1	60	54	271	57.3	70	61	283
		STD	30.0	40	32	154	34.8	40	37	162	31.7	40	33	156	36.5	45	39	164
	676 3 60	MED	32.7	40	35	166	37.5	45	40	174	34.4	40	37	168	39.2	45	42	176
		нідн	34.4	40	37	193	39.2	45	42	201	36.1	45	39	195	40.9	50	44	203
		ULTRA	38.7	50	41	204	43.5	50	46	212	40.4	50	43	206	45.2	50	48	214

Table 26 - Unit Wire/Fuse or HACR Breaker Sizing Data (cont)

MCA DISC. SIZE MCA						Ż	NO C.O. or UNPW	NPWR C.O.							w/ PWRD C.O.	1D C.O.			
					NO P.	ij		2	v/ P.E. (pwrd	l fr/ unit)			NO P.E	ij			w/ P.E. (pwrd fr/ unit)	d fr/ unit)	
Mode Hacks F.A Hack F.A Hacks Hack		NOM. V-Ph-Hz	TYPE		MAX FUSE or	DISC.	SIZE		MAX FUSE or	DISC. SIZE	SIZE		MAX FUSE or	DISC	DISC. SIZE		MAX FUSE or	DISC. SIZE	SIZE
STD 733/72.5 100/100 76/75 412 65.1,64.3 100/100 208/ MED 65.3 100 97 451 97.7 125 208/ HIGH 92.8 1004 97.5 104.6 125 200-3-60 HIGH 92.8 1004 256 104.6 125 460-3-60 HIGH 47.3 50 39 231 49.3 50 460-3-60 HIGH 47.3 50 39 231 49.3 50 460-3-60 HIGH 47.3 50 39 231 40.4 50 460-3-60 HIGH 47.3 60 37 57.5 70 460-3-60 HIGH 47.3 60 37 57.5 70 575-3-60 HIGH 34.5 56 113.7 125 70 466-3-60 HIGH 119.0 125 126 136.7 125 575-30-30 MED<				MCA	HACR BRKR	FLA	LRA	MCA	HACR BRKR	FLA	LRA	MCA	HACR BRKR	FLA	LRA	MUA	HACR BRKR	FLA	LRA
200/ 200 MED 65.9 100 91 451 97.7 125 200- 200-3-60 HICH 92.8 100 99 555 104.6 125 200-3-60 HICH 92.8 104.4 125 109 555 104.6 125 400-3-60 HICH 47.3 50 287 287 483 50 400-3-60 HICH 47.3 60 54 287 483 60 400-3-60 HICH 31.8 40 37 149 385 46 400-3-60 HICH 362 46 397 575 70 MED 31.8 40 37 116 385 46 VILPA 31.8 40 37 397 50 70 MED 1019 125 10 36 45 50 125 VILPA 405 50 287 100 125 125 125 </th <th></th> <th></th> <th>STD</th> <th>73.3/72.5</th> <th>100/100</th> <th>76/75</th> <th>412</th> <th>85.1/84.3</th> <th>100/100</th> <th>90/89</th> <th>432</th> <th>78.1/77.3</th> <th>100/100</th> <th>82/81</th> <th>417</th> <th>89.9/89.1</th> <th>100/100</th> <th>95/95</th> <th>437</th>			STD	73.3/72.5	100/100	76/75	412	85.1/84.3	100/100	90/89	432	78.1/77.3	100/100	82/81	417	89.9/89.1	100/100	95/95	437
230-3-60 HGH 92.8 100 99 555 104.6 125 ULTRA UUTRA 104.4 125 109 565 116.2 150 ULTRA 104.4 125 50 33 231 434 50 HCH 47.3 50 345 50 50 280 60 50 HCH 47.3 50 51.3 60 54 307 57.5 70 HCH 31.8 40 34.5 40 34 182 645 70 HCH 34.5 40 34 53 50 50 50 JTA 362 45 30 223 45 30 50 JTA 40.5 50 44 53 50 50 50 JTA 101.9 125 109 53 50 50 50 JTA 101.9 125 125 125		208/	MED	85.9	100	91	451	97.7	125	104	471	90.7	100	96	456	102.5	125	110	476
ULTRA 104.4 125 109 565 116.2 150 400-3-60 MED 43.1 50 39 231 43.4 50 400-3-60 HICH 47.3 60 50 287 53.5 60 400-3-60 HICH 47.3 60 50 287 53.5 60 400-3-60 HICH 47.3 60 50 287 57.5 70 400-3-60 HICH 77.3 60 57 194 57.5 70 575-3-60 HICH 30.5 45 307 57.5 70 4105 31.8 40 37 194 39.3 66 900 31.5 109 187 1137 125 109 900 101.9 125 108 53.6 70 80 900 101.9 126 126 130 157 126 900 1017 126 <th>(1</th> <th>230-3-60</th> <th>HIGH</th> <td>92.8</td> <td>100</td> <td>66</td> <td>525</td> <td>104.6</td> <td>125</td> <td>112</td> <td>545</td> <td>97.6</td> <td>125</td> <td>104</td> <td>530</td> <td>109.4</td> <td>125</td> <td>118</td> <td>550</td>	(1	230-3-60	HIGH	92.8	100	66	525	104.6	125	112	545	97.6	125	104	530	109.4	125	118	550
STD 372 50 39 231 434 50 480-3-60 HICH 47.3 60 50 280 49.3 60 480-3-60 HICH 47.3 60 50 287 53.5 60 901-3-60 HICH 47.3 60 50 287 57.5 70 87D 318 94 318 40 37 194 39.3 66 975-3-90 HICH 30.5 45 30 226 45 30 45 975-3-90 HICH 30.5 40 37 194 393 45 975-3-90 HICH 30.5 40 37 194 393 45 900-30 HICH 1010 125 108 137 125 109 900-30 HICH 1010 125 126 130 137 125 900-30 HICH 1010 125 126			ULTRA	104.4	125	109	565	116.2	150	123	585	109.2	125	115	570	121.0	150	128	590
Hend-after High 431 50 46 250 493 60 High 713 60 54 307 575 70 ULTRA 51.3 60 54 307 575 70 VULRA 51.3 60 54 307 575 70 VULRA 51.3 60 54 307 575 70 VULRA 31.6 34.5 40 37 140 365 45 VULRA 36.5 56 70 37 141 113 141 VULRA 36.5 60 73 70 86 45 VULRA 36.5 60 70 87 70 86 VILRA 10.6 126 126 126 130 150 VILRA 610 126 70 87 700 80 VILRA 1100 150 126 700 80 80			STD	37.2	50	39	231	43.4	50	46	243	39.4	50	42	233	45.6	50	49	245
400-3-00 Hich 47.3 60 50 535 60 ULTRA 51.3 60 54 307 57.5 70 ULTRA 51.3 60 54 307 57.5 70 VLTRA 51.3 60 54 307 57.5 70 VLTRA 51.3 40 37 194 39.3 45 VLTRA 36.5 40 37 194 39.3 45 VLTRA 36.5 40 37 140 36 45 VLTRA 40.5 50 45 39 221 410 VLTRA 40.5 126 65 45 50 45 VLTRA 40.5 126 126 45 46 46 46 VLTRA 40.5 126 66 45 46 46 46 46 46 46 46 46 46 46 46 46			MED	43.1	50	46	250	49.3	60	53	262	45.3	50	48	252	51.5	60	56	264
ULTRA 51.3 60 54 307 57.5 70 FT5-3-60 MED 31.8 40 37 194 30.3 45 F75-3-60 MED 34.5 40 37 194 30.3 45 F75-3-60 MED 34.5 40 37 194 30.3 45 ULTRA 36.2 45 50 43 32 45.3 50 ULTRA 40.5 50 43 32 45 50 45 ULTRA 40.5 50 43 32 45 50 ULTRA 40.5 50 43 33 515 50 ULTRA 40.5 50 43 53 50 50 ULTRA 40.5 50 43 53 50 50 MED 108.7 125 126 126 130 150 150 HIGH 510 53 50<		160-3-60	HIGH	47.3	09	50	287	53.5	09	58	299	49.5	60	53	289	55.7	60	60	301
STD 31.8 40 34 182 36.6 45 F75-3-60 HIGH 36.2 45 39.3 45 MED 36.2 45 39 221 41.0 50 ULTRA 36.2 45 39 232 45.3 50 ULTRA 101.9 125 108 332 45.3 50 SUD 101.9 125 125 108 538 113.7 125 J208 MED 108.7 125 126 126 538 150.6 50 HIGH 1190 150 126 535 130.8 150 50 HIGH 638 80 66 335 70.0 80 50 HIGH 638 80 66 49.8 60 70 80 F55-3-60 MED 46.7 50 233 70.0 80 70 F55-3-60 MED 140 </th <th></th> <th></th> <th>ULTRA</th> <td>51.3</td> <td>09</td> <td>54</td> <td>307</td> <td>57.5</td> <td>70</td> <td>61</td> <td>319</td> <td>53.5</td> <td>60</td> <td>57</td> <td>309</td> <td>59.7</td> <td>70</td> <td>64</td> <td>321</td>			ULTRA	51.3	09	54	307	57.5	70	61	319	53.5	60	57	309	59.7	70	64	321
MED 345 40 37 194 383 45 F75-3-60 HIGH 362 45 39 221 410 50 ULTRA 362 45 39 221 410 50 ULTRA 405 50 43 232 45.3 50 PULTRA 108.7 125 108 125 108 538 113.7 125 PULTRA 605 125 126 126 126 130.8 150 PULTRA 810 168.7 126 126 126 126 150 HIGH 1190 150 126 126 126 150 150 HIGH 606 70 66 315 622 130.8 150 HIGH 638 80 68 335 700 80 150 F57-3-60 MED 616 50 50 515 60 175			STD	31.8	40	34	182	36.6	45	30	190	33.5	40	36	184	38.3	45	41	192
$^{5,7-3-560}$ HiGH 362 45 39 271 41.0 50 10			MED	34.5	40	37	194	39.3	45	42	202	36.2	45	39	196	41.0	50	44	204
ULTRA 40.5 50 43 232 45.3 50 208^{\prime} $8TD$ 1019 125 108 538 113.7 125 $230-3-60$ MED 108.7 125 125 115 120.5 150 $HIGH$ 1190 150 126 126 126 120.5 150 $HIGH$ 510 56.6 70 66 210.8 80 $HIGH$ 610.6 70 66 213.6 80 80 $HIGH$ 63.8 80 66 213.6 80 80 $HIGH$ 63.8 80 66 233 51.5 60 $575-3-60$ MED 46.7 50 48 206 49.8 80 $460-3-60$ MED 610.6 70 80 80 80 $575-3-60$ MED 124.1 124.1 124.1 </th <th>1)</th> <th>0/9-3-60</th> <th>HIGH</th> <td>36.2</td> <td>45</td> <td>39</td> <td>221</td> <td>41.0</td> <td>50</td> <td>44</td> <td>229</td> <td>37.9</td> <td>45</td> <td>41</td> <td>223</td> <td>42.7</td> <td>50</td> <td>46</td> <td>231</td>	1)	0/9-3-60	HIGH	36.2	45	39	221	41.0	50	44	229	37.9	45	41	223	42.7	50	46	231
STD 101.9 125 106 538 113.7 125 2004 MED 108.7 125 126 120.5 120.5 120.5 2300-3-60 MED 108.7 125 126 126 120.5 120.5 120.5 HIGH 119.0 150 126 70 602 278 62.8 80 HIGH 63.8 70 60.6 70 66 278 62.8 80 HIGH 63.8 80 60 235 70.0 80 80 F57-3-60 MED 63.8 80 68 80 80 80 F57-3-60 MED 63.8 80 68 70.0 80 80 F57-3-60 MED 63.4 175 129 70.0 80 70.0 F57-3-60 MED 124.9 175 137 703 143.5 175 200-3-60 MED 131.7			ULTRA	40.5	50	43	232	45.3	50	48	240	42.2	50	45	234	47.0	60	50	242
200% MED 108.7 125 115 612 120.5 150 230-3-600 HIGH 119.0 150 126 652 130.8 150 400-3-600 MED 56.6 70 60 278 62.8 80 400-3-600 MED 60.6 70 65 315 66.8 80 400-3-600 MED 60.6 70 65 315 66.8 80 400-3-600 MED 45.0 50 60 49.8 80 80 575-3-60 MED 46.7 50 60 49.8 80 F75-3-60 MED 50.4 60 54 244 55.6 60 S75-3-60 MED 131.7 175 147 743 155.8 175 S00-3-3-60 MED 131.7 175 147 55.9 60 175			STD	101.9	125	108	538	113.7	125	121	558	106.7	125	113	543	118.5	150	127	563
HIGH 119.0 150 126 652 130.8 150 460-3-60 MED 56.6 70 60 278 62.8 80 460-3-60 MED 60.6 70 65 315 66.8 80 460-3-60 MED 60.6 70 65 315 66.8 80 460-3-60 MED 63.8 80 68 335 70.0 80 575-3-60 MED 45.0 50 50 233 51.5 60 575-3-60 MED 46.7 50 233 51.5 60 575-3-60 MED 50.4 60 54 244 55.2 60 575-3-60 MED 175 175 147 743 175 175 2006/ MED 141.0 175 147 743 152.8 200 230-3-3-60 MED 64.9 80 744 55.4 70 <th>0</th> <th>208/ 30-3-60</th> <th>MED</th> <td>108.7</td> <td>125</td> <td>115</td> <td>612</td> <td>120.5</td> <td>150</td> <td>129</td> <td>632</td> <td>113.5</td> <td>125</td> <td>121</td> <td>617</td> <td>125.3</td> <td>150</td> <td>135</td> <td>637</td>	0	208/ 30-3-60	MED	108.7	125	115	612	120.5	150	129	632	113.5	125	121	617	125.3	150	135	637
STD 56.6 70 60 278 62.8 80 460-3-60 MED 60.6 70 65 315 66.8 80 460-3-60 MED 60.6 70 65 315 66.8 80 460-3-60 MED 60.6 70 65 315 66.8 80 F15-3-60 MED 45.0 50 50 233 51.5 80 F75-3-60 MED 46.7 50 50 233 51.5 60 J15 146.7 50 50 54 244 55.2 60 J208 ¹ 1124 175 129 629 136.7 175 J203-3-60 MED 131.7 175 143 175 175 J203-3-60 MED 141.0 175 143 175 175 J203-3-60 MED 68.9 703 143.5 175 175 J400-3-60			HIGH	119.0	150	126	652	130.8	150	140	672	123.8	150	132	657	135.6	150	145	677
460-3-60 MED 60.6 70 65 315 66.8 80 HIGH 63.8 80 68 335 70.0 80 FTD 45.0 50 50 48 206 49.8 80 FTD 45.0 50 50 233 51.5 60 FTD 46.7 50 50 50 233 51.5 60 HIGH 50.4 60 54 244 55.2 60 75 208/ MED 1175 175 129 629 136.7 175 230-3-60 MED 141.0 175 137 703 143.5 175 230-3-60 HIGH 141.0 175 147 743 152.8 200 460-3-60 MED 68.9 302 71.1 203 175 204 460-3-60 MED 68.9 70.1 703 152.8 200 204			STD	56.6	70	60	278	62.8	80	67	290	58.8	70	62	280	65.0	80	70	292
HIGH 633 70.0 80 FTD 45.0 50 48 206 49.8 60 F75-3-60 MED 46.7 50 50 208 715 60 F75-3-60 MED 46.7 50 50 203 51.5 60 F15 70.0 87D 175 175 233 51.5 60 F16H 50.4 60 54 244 55.2 60 S7D 131.7 175 137 703 143.5 175 230-3-3-60 MED 141.0 175 147 743 152.8 200 230-3-3-60 MED 64.9 80 62 143.5 175 240-3-50 MED 141.0 175 147 743 152.8 200 460-3-60 MED 68.9 90 733 162.8 700 90 460-3-60 MED 68.9 90 <t< th=""><th></th><th>160-3-60</th><th>MED</th><td>9.09</td><td>02</td><td>65</td><td>315</td><td>66.8</td><td>80</td><td>72</td><td>327</td><td>62.8</td><td>80</td><td>67</td><td>317</td><td>69.0</td><td>80</td><td>74</td><td>329</td></t<>		160-3-60	MED	9.09	02	65	315	66.8	80	72	327	62.8	80	67	317	69.0	80	74	329
STD 45.0 50 48 206 49.8 60 575-3-60 MED 46.7 50 53 51.5 60 HIGH 50.4 50.4 50 53 51.5 60 HIGH 50.4 50.4 50 54 244 55.2 60 STD 124.9 175 129 629 136.7 175 208/ MED 131.7 175 137 703 143.5 175 230-3-60 HIGH 141.0 175 147 743 152.8 200 460-3-60 MED 68.9 90 73 359 75.1 90 460-3-60 MED 701 90 76 379 703 100 460-3-60 MED 703 703 703 703 100 460-3-60 MED 701 90 76 379 763 100 555.6 701			HIGH	63.8	80	68	335	70.0	80	75	347	66.0	80	71	337	72.2	06	78	349
575-3-60 MED 46.7 50 50 233 51.5 60 HIGH 50.4 60 54 244 55.2 60 208/ HIGH 50.4 60 54 244 55.2 60 208/ MED 124.9 175 129 629 136.7 175 208/ MED 131.7 175 137 703 143.5 175 208- HIGH 141.0 175 147 743 152.8 200 460-3-60 MED 64.9 80 68 322 71.1 90 460-3-60 MED 72.1 90 73 359 75.1 90 460-3-60 MED 72.1 90 76 733 763 703 100 460-3-60 MED 55.6 70 76 733 763 703 100 575-3-60 MED 55.6 70 76 <th></th> <th></th> <th>STD</th> <td>45.0</td> <td>50</td> <td>48</td> <td>206</td> <td>49.8</td> <td>60</td> <td>54</td> <td>214</td> <td>46.7</td> <td>50</td> <td>50</td> <td>208</td> <td>51.5</td> <td>60</td> <td>56</td> <td>216</td>			STD	45.0	50	48	206	49.8	60	54	214	46.7	50	50	208	51.5	60	56	216
	u)	375-3-60	MED	46.7	50	50	233	51.5	60	56	241	48.4	60	52	235	53.2	60	58	243
STD 124.9 175 129 629 136.7 175 208 ¹ MED 131.7 175 137 703 143.5 175 230-3-60 HIGH 141.0 175 137 703 143.5 175 230-3-60 HIGH 141.0 175 147 743 152.8 200 460-3-60 MED 64.9 80 68 322 71.1 90 460-3-60 MED 68.9 90 73 359 75.1 90 460-3-60 MED 72.1 90 76 379 78.3 100 455.5-3-60 MED 55.6 70 58.7 70 90 575-3-60 MED 55.6 70 58 60.4 80 90			HIGH	50.4	60	54	244	55.2	60	60	252	52.1	60	56	246	56.9	70	62	254
208/ 230-3-60 MED 13.7 175 137 703 143.5 175 230-3-60 HIGH 141.0 175 147 743 152.8 200 410 141.0 175 147 743 152.8 200 410 141.0 175 147 743 152.8 200 410 710 870 68.9 80 68 322 71.1 90 460-3-60 MED 68.9 90 73 359 75.1 90 HIGH 72.1 90 76 379 783 100 55.6 70 56 70 587 70 575-3-60 MED 55.6 70 587 70 575-3-60 MED 55.6 70 587 70			STD	124.9	175	129	629	136.7	175	142	649	129.7	175	134	634	141.5	175	148	654
HIGH 141.0 175 147 743 152.8 200 HIGH 141.0 175 147 743 152.8 200 STD 64.9 80 68 322 71.1 90 HIGH 72.1 90 73 359 75.1 90 HIGH 72.1 90 76 379 78.3 100 STD 53.9 60 56 28.7 70 90 STD 55.6 70 58 60.4 90 60 56 287 70 STD 55.6 70 58 56.4 80 80 80	0	208/ 30-3-60	MED	131.7	175	137	703	143.5	175	150	723	136.5	175	142	708	148.3	175	156	728
STD 64.9 80 68 322 71.1 90 460-3-60 MED 68.9 90 73 359 75.1 90 HIGH 72.1 90 76 379 76.1 90 STD 53.9 60 76 379 76.1 90 MIGH 72.1 90 76 379 76.3 100 STD 53.9 60 56 235 58.7 70 ST5-3-60 MED 55.6 70 58 262 60.4 80			HIGH	141.0	175	147	743	152.8	200	161	763	145.8	175	153	748	157.6	200	167	768
460-3-60 MED 68.9 90 73 359 75.1 90 HIGH 72.1 90 76 379 78.3 100 STD 53.9 60 56 235 58.7 70 S75-3-60 MED 55.6 70 58 20.4 80			STD	64.9	80	68	322	71.1	6	75	334	67.1	06	70	324	73.3	06	78	336
HIGH 72.1 90 76 379 78.3 100 STD 53.9 60 56 235 58.7 70 MED 55.6 70 58 262 60.4 80		160-3-60	MED	68.9	06	73	359	75.1	6	80	371	71.1	06	75	361	77.3	100	82	373
STD 53.9 60 56 235 58.7 70 MED 55.6 70 58 262 60.4 80			HIGH	72.1	06	76	379	78.3	100	83	391	74.3	06	79	381	80.5	100	86	393
MED 55.6 70 58 262 60.4 80			STD	53.9	60	56	235	58.7	70	62	243	55.6	70	58	237	60.4	80	64	245
	u)	575-3-60	MED	55.6	02	58	262	60.4	80	64	270	57.3	70	60	264	62.1	80	66	272
59.3 70 62 273 64.1 80			HIGH	59.3	20	62	273	64.1	80	68	281	61.0	80	64	275	65.8	80	70	283

HACR Breaker
Factory-Installed
Data with
- Unit Wire Sizing
Table 27 -

MCA						z	NO C.O. or UNP/	INPWR C.O.							w/ PWRD C.O	D C.O.			
V-Ph-Hz TVE McA MC	48LC	NOM.	IFM		NO	Ë.			v/ P.E. (pwrc	l fr/ unit)			NOP	ų			w/ P.E. (pwrd fr/ unit)	d fr/ unit)	
	UNIT	V-Ph-Hz	TYPE		HACR	DISC.	SIZE		HACR	DISC.	SIZE		HACR	DISC.	SIZE		HACR	DISC. SIZE	SIZE
Supply 2004631 (501 (501 (501 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106 (500 (5106				MCA	BRKR	FLA	LRA	MCA	BRKR	FLA	LRA	MCA	BRKR	FLA	LRA	MCA	BRKR	FLA	LRA
2001 MED 64.1(94.1 80/80 87/86 373 53.97.59 80/90 81/80 73.72 333 200-3-56 HIGH 71.7 90 75 900 91 440 73.72 83 200-3-56 HIGH 71.7 90 75 85 100 91 470 755 90 81 940 73.72 83 400 73.73 813 70 81 75 75 75 90 81 940 757 83 940 81 940 81 940 81 940 81 940 81 940 81 940 81 940 94 <th></th> <th></th> <th>STD</th> <th>59.1/59.1</th> <th>80/80</th> <th>61/60</th> <th>343</th> <th>70.9/70.9</th> <th>06/06</th> <th>75/74</th> <th>363</th> <th>63.9/63.9</th> <th>80/80</th> <th>67/66</th> <th>348</th> <th>75.7/75.7</th> <th>06/06</th> <th>80/79</th> <th>368</th>			STD	59.1/59.1	80/80	61/60	343	70.9/70.9	06/06	75/74	363	63.9/63.9	80/80	67/66	348	75.7/75.7	06/06	80/79	368
200-3-60 Hich 71.7 80 76 825 100 89 405 755 60 81 837 UTRA 777 100 84 100 84 100 89 461 89 461 MED 373 40 33 40 33 47 96 49 109 335 400 35 40 179 355 40 35 40 35 40 35 40 36 461 36 461 36 461 36 461 36 461		208/	MED	64.1/64.1	80/80	67/66	378	75.9/75.9	06/06	81/80	398	68.9/68.9	06/06	73/72	383	80.7/80.7	100/100	86/85	403
ULTRA 78.7 100 84 456 91.5 100 97 47.6 94.5 100 98.9 461 MED 33.9 4.0 37.5 4.6 0.1 53.5 4.0 35.5 35.5		230-3-60	HIGH	71.7	6	76	382	83.5	100	89	402	76.5	06	81	387	88.3	100	95	407
FTDSTD313403345375454545454035463646460-3-60MED33345361844015047196381454035186460-3-60MED3724540166361454050415042186460-3-60MED3724185044203454050415041225575-3-60MED20120326611920235311172254105041575-3-60MED203203203313203303303303303303303303303575-3-60MED20330203311722/72203314272203313575-3-60MED203303203313722/72303303303303500310311722/72303313313313313313500310311722/7230331421721731320340130331331331331331331320340130321311033121103313313313203401303313313313313313313203			ULTRA	79.7	100	84	456	91.5	100	97	476	84.5	100	89	461	96.3	110	103	481
Heth 339 45 36 184 401 50 43 46 40 50 43 50 44 50 46 50 47 196 561 45 36 186 Hith 372 45 40 196 50 44 50 50			STD	31.3	40	33	167	37.5	45	40	179	33.5	40	35	169	39.7	50	42	181
House-off High 372 45 40 166 434 50 47 198 364 50 42 188 ULTRA 418 50 44 50 44 50 44 50 47 255 WUTRA 418 50 24 30 28 110 225 480 60 51 255 440 50 47 255 WUTRA 281 300 28 133 309 355 31 127 261 30 25 31 139 258 31 139 135 135 135 135 135 135 135 135 135 135 135 136 135			MED	33.9	45	36	184	40.1	50	43	196	36.1	45	38	186	42.3	50	45	198
ULTRAULTRA118504422348060512254405047225TotalSTD244302611929235311272613028131TotalMED261302611929235311272613028131TotalMED26130261192923531111278302831TotalMED2613028311319358343131928831313TotalMED8007069371792/721001081830735531133206/MED8007069371792/7210010818371772/72909075/4376203-3-50MED80010082441319288311792/72909075/4376203-3-50MED8001008244183910108383912053912053<1	4	460-3-60	HIGH	37.2	45	40	186	43.4	50	47	198	39.4	50	42	188	45.6	50	49	200
ST3-3-66 BTD 244 30 26 119 222 35 31 127 261 30 28 121 F73-3-66 HIGH 27.1 30 28 133 303 35 33 141 27.8 30 30 30 30 30 F73-3-66 HIGH 27.1 30 28 133 303 35 31 139 288 31 133 UITRA 290 35 31 158 338 40 36 31 732/72 309 737 733 2001 100 84 410 918 100 386 31 72/72 309 737 733 736 736 736 2003-3-50 HIGH 869 100 87 125 100 386 31 100 376 736 2003-3-50 HIGH 869 100 916 310 100 310 <th></th> <th></th> <th>ULTRA</th> <th>41.8</th> <th>50</th> <th>44</th> <th>223</th> <th>48.0</th> <th>60</th> <th>51</th> <th>235</th> <th>44.0</th> <th>50</th> <th>47</th> <th>225</th> <th>50.2</th> <th>60</th> <th>54</th> <th>237</th>			ULTRA	41.8	50	44	223	48.0	60	51	235	44.0	50	47	225	50.2	60	54	237
F75-3-60 MED 26.1 30 28 133 309 35 31 11 27.8 30			STD	24.4	30	26	119	29.2	35	31	127	26.1	30	28	121	30.9	35	33	129
Vib-300 High 27.1 30 29 131 319 35 31 133 133 UITRA 29.0 35 31 158 338 40 36 166 30.7 35 31 133 UITRA 29.0 35 31 158 338 40 36 166 30.7 35 33 160 UITRA 29.0 35 31 158 338 40 36 166 30.7 35 33 160 75/74 376 415 200 100 84 410 88 38 100 86 307 35 33 160 415 376 200 4101 869 100 87 125 100 87 376 415 416 415 416 415 416 416 416 416 416 416 416 416 416 416 416 416			MED	26.1	30	28	133	30.9	35	33	141	27.8	30	30	135	32.6	40	35	143
ULTRA 290 35 31 158 338 40 36 166 30.7 35 33 160 206/ STD 67.467.4 9090 70/69 371 792/79.2 100/100 85/82 391 722/72.2 9090 75/74 376 415 200 MED 60.467.4 9090 70/69 371 792/79.2 1001 85/82 391 722/72.2 9090 75/74 376 415 200-3-3-60 HIGH 86.9 100 84 401 792/79.2 100 98 430 75/74 376 415 200-3-3-60 HIGH 86.9 100 92.4 1003 125 1016 56.4 103 125 108 57/42 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43 57/43<		09-5-9/9	HIGH	27.1	30	29	131	31.9	35	34	139	28.8	35	31	133	33.6	40	36	141
208 674/67.4 9090 706 371 792/792 100/100 83/82 391 722/722 90/90 75/74 376 208 MED 80.0 100 84 100 84 100 90 75/74 376 415 209 HGH 86.0 100 84 100 91 100 90 75/74 376 415 200-30-560 HIGH 86.0 100 82 430 84.8 100 90 75/74 376 415 200-30-360 HIGH 86.9 100 92 440 98.7 125 105 504 91.7 100 97 489 200-30-360 HIGH 44.9 50 44.0 50 44.0 50 216 410 509 509 46.9 509 509 46.9 509 509 509 509 509 509 509 509 509 509 509 </th <th></th> <th></th> <th>ULTRA</th> <th>29.0</th> <th>35</th> <th>31</th> <th>158</th> <th>33.8</th> <th>40</th> <th>36</th> <th>166</th> <th>30.7</th> <th>35</th> <th>33</th> <th>160</th> <th>35.5</th> <th>40</th> <th>38</th> <th>168</th>			ULTRA	29.0	35	31	158	33.8	40	36	166	30.7	35	33	160	35.5	40	38	168
200/ 230-3-60 MED 80.0 100 84 410 91.8 100 90 415 230-3-60 Hich 86.9 100 92 484 98.7 125 105 504 91.7 100 97 489 230-3-60 Hich 86.9 100 92 484 98.7 125 105 504 91.7 100 97 489 230-3-60 Hich 86.9 100 92 484 98.7 125 105 504 91.7 100 97 489 240-360 Hich 44.9 50 430 51.1 60 52.4 103.3 125 108 52.9 460-3-60 Hich 44.9 50 43.9 50.6 44.9 52.9 108 52.9 108 52.9 108 52.9 108 52.9 108 52.9 108 52.9 108 52.9 108 52.9 108 1			STD	67.4/67.4	06/06	20/69	371	79.2/79.2	100/100	83/82	391	72.2/72.2	06/06	75/74	376	84.0/84.0	100/100	88/88	396
230-3-60 HiGH 86.9 100 92 484 98.7 125 105 504 91.7 100 97 489 230-3-50 HiGH 86.9 100 92 484 98.7 125 105 504 91.7 100 97 489 ULTRA 98.5 125 103 524 1103 125 116 544 103.3 125 108 529 WED 810 40.7 550 44.9 501 505 37.0 45 389 125 116 524 103 125 108 529 HIGH 44.9 50 48.9 60 51.1 60 55 201 47.1 60 50 214 HIGH 48.9 60 51.1 60 55 201 47.1 60 50 214 MED 310 410 321 410 317 40 31 4		208/	MED	80.0	100	84	410	91.8	100	98	430	84.8	100	06	415	96.6	110	103	435
ULTRA 98.5 125 103 125 116 544 103.3 125 108 529 VULTRA 98.5 125 103 125 103.3 125 108 529 VULTRA 81D 34.8 45 36 193 41.0 50 43 205 37.0 45 39 195 Vultra 440 50 43 212 46.9 50 244 42.9 50 45 37.0 45 39 195 Vultra 48.9 50 48 212 46.9 50 50 224 42.9 50 214 215 Vultra 48.9 50 48 214 50 50 214 214 214 215 215 216 214 214 214 214 214 214 214 214 214 214 214 214 214 214 215 214 214 <th></th> <th>230-3-60</th> <th>HIGH</th> <th>86.9</th> <th>100</th> <th>92</th> <th>484</th> <th>98.7</th> <th>125</th> <th>105</th> <th>504</th> <th>91.7</th> <th>100</th> <th>97</th> <th>489</th> <th>103.5</th> <th>125</th> <th>111</th> <th>509</th>		230-3-60	HIGH	86.9	100	92	484	98.7	125	105	504	91.7	100	97	489	103.5	125	111	509
STD 348 45 36 193 410 50 43 205 37.0 45 39 195 460-3-60 MED 40.7 50 43 212 46.9 60 50 224 42.9 50 46 214 460-3-60 HIGH 44.9 50 43 212 46.9 60 50 224 42.9 50 46 214 460-3-60 HIGH 44.9 50 45 60 55 261 47.1 60 50 214 214 700 30.0 40 51 269 55.1 60 50 281 40 51.1 60 50 261 271 875 30.0 40 31 40 31.4 40 31.4 40 31.4 40 31.6 271 875 46 47 40 31.4 40 37.7 40 37.7 40<			ULTRA	98.5	125	103	524	110.3	125	116	544	103.3	125	108	529	115.1	150	122	549
MED 40.7 50 43 212 46.9 60 50 224 42.9 50 46 214 460-3-60 HIGH 44.9 50 43 51.1 60 55 261 47.1 60 50 251 HIGH 44.9 50 48 249 51.1 60 55 261 47.1 60 50 251 ULTRA 48.9 60 51.1 60 55 261 47.1 60 50 251 STD 30.0 40 51.1 60 59 281 51.1 60 50 251 MED 30.0 40 51 269 55.1 60 51.1 60 50 261 271 MED 32.7 40 37.5 45 34.8 40 37.4 40 37 168 271 HIGH 34.4 40 35 156 31			STD	34.8	45	36	193	41.0	50	43	205	37.0	45	39	195	43.2	50	46	207
490-3-50 HIGH 44.9 50 48 249 51.1 60 55 261 47.1 60 50 251 ULTRA 48.9 60 51 269 55.1 60 50 261 47.1 60 50 251 ULTRA 48.9 60 51 269 55.1 60 59 281 51.1 60 54 271 STD 30.0 40 32 154 34.8 40 37 40 33 156 MED 32.7 40 37 45 34.4 40 37 168 271 HIGH 34.4 40 37 193 392 45 40 174 34.4 40 37 168 HIGH 34.4 40 37 193 392 45 201 361 40 37 168	ţ	00 000	MED	40.7	50	43	212	46.9	60	50	224	42.9	50	46	214	49.1	60	53	226
ULTRA 48.9 60 51 200 59 281 51.1 60 54 271 STD 30.0 40 32 154 34.8 40 37 162 31.7 40 33 156 MED 32.7 40 37 45 46 37 162 31.7 40 33 156 HIGH 34.4 40 37.5 45 45 40 174 34.4 40 37 168 HIGH 34.4 40 37 45 45 201 36.1 45 39 156	2	460-3-60	нідн	44.9	50	48	249	51.1	60	55	261	47.1	60	50	251	53.3	60	57	263
STD 30.0 40 37 162 31.7 40 33 156 MED 32.7 40 35 166 37.5 45 40 174 34.4 40 37 168 HIGH 34.4 40 37 193 392 45 40 174 34.4 40 37 168 HIGH 34.4 40 37 193 392 45 42 201 36.1 45 39 195			ULTRA	48.9	60	51	269	55.1	60	59	281	51.1	60	54	271	57.3	70	61	283
MED 32.7 40 35 166 37.5 45 40 174 34.4 40 37 168 HIGH 34.4 40 37 193 39.2 45 42 201 36.1 45 39 195 HIGH 34.4 40 37 193 39.2 45 42 201 36.1 45 39 195			STD	30.0	40	32	154	34.8	40	37	162	31.7	40	33	156	36.5	45	39	164
HIGH 34.4 40 37 193 39.2 45 42 201 36.1 45 39 195 IIITEA		676 3 60	MED	32.7	40	35	166	37.5	45	40	174	34.4	40	37	168	39.2	45	42	176
		00-0-00	HIGH	34.4	40	37	193	39.2	45	42	201	36.1	45	39	195	40.9	50	44	203
38.7 50 41 204 43.5 50 46 212 40.4 50 43 206			ULTRA	38.7	50	41	204	43.5	50	46	212	40.4	50	43	206	45.2	50	48	214

Table 27 - Unit Wire Sizing Data with Factory-Installed HACR Breaker (cont)

					ź	NO C.O. or UNPW	NPWR C.O.							w/ PWRD C.O	D C.O.			
48LC	NOM.	IFM		NO P.E.	ш			w/ P.E. (pwrd fr/ unit)	l fr/ unit)			NO P.E.	ц			w/ P.E. (pwrd fr/ unit)	d fr/ unit)	
UNIT	V-Ph-Hz	туре	V UM	HACR	DISC. SIZE	SIZE	VUV	HACR	DISC.	SIZE	V UM	HACR	DISC.	SIZE	VUV	HACR	DISC.	SIZE
			NICA	BRKR	FLA	LRA	MCA	BRKR	FLA	LRA	A DW	BRKR	FLA	LRA	MCA	BRKR	FLA	LRA
		STD	73.3/73.3	100/100	76/75	412	85.1/85.1	100/100	68/06	432	78.1/78.1	1 00/1 00	82/81	417	89.9/89.9	100/100	95/95	437
	208/	MED	85.9	100	91	451	97.7	125	104	471	90.7	100	96	456	102.5	125	110	476
	230-3-60	HIGH	92.8	100	66	525	104.6	125	112	545	97.6	125	104	530	109.4	125	118	550
		ULTRA	104.4	125	109	565	116.2	150	123	585	109.2	125	115	570	121.0	150	128	590
		STD	37.2	50	39	231	43.4	50	46	243	39.4	50	42	233	45.6	50	49	245
		MED	43.1	50	46	250	49.3	09	53	262	45.3	50	48	252	51.5	60	56	264
20	460-3-60	нан	47.3	09	50	287	53.5	09	58	299	49.5	60	53	289	55.7	60	60	301
		ULTRA	51.3	60	54	307	57.5	70	61	319	53.5	60	57	309	59.7	70	64	321
		STD	31.8	40	34	182	36.6	45	39	190	33.5	40	36	184	38.3	45	41	192
		MED	34.5	40	37	194	39.3	45	42	202	36.2	45	39	196	41.0	50	44	204
	5/5-3-60	нан	36.2	45	39	221	41.0	50	44	229	37.9	45	41	223	42.7	50	46	231
		ULTRA	40.5	50	43	232	45.3	50	48	240	42.2	50	45	234	47.0	60	50	242
		STD	101.9	125	108	538	113.7	125	121	558	106.7	125	113	543	118.5	150	127	563
	208/ 230-3-60	MED	108.7	125	115	612	120.5	150	129	632	113.5	125	121	617	125.3	150	135	637
		HIGH	119.0	150	126	652	130.8	150	140	672	123.8	150	132	657	135.6	150	145	677
		STD	56.6	20	60	278	62.8	80	67	290	58.8	70	62	280	65.0	80	20	292
24	460-3-60	MED	60.6	70	65	315	66.8	80	72	327	62.8	80	67	317	69.0	80	74	329
		нвн	63.8	80	68	335	70.0	80	75	347	66.0	80	71	337	72.2	06	78	349
		STD	45.0	50	48	206	49.8	60	54	214	46.7	20	50	208	51.5	09	56	216
	575-3-60	MED	46.7	50	50	233	51.5	00	56	241	48.4	60	52	235	53.2	60	58	243
		HIGH	50.4	60	54	244	55.2	60	60	252	52.1	60	56	246	56.9	70	62	254
		STD	124.9	175	129	629	136.7	175	142	649	129.7	175	134	634	141.5	175	148	654
	208/ 230-3-60	MED	131.7	175	137	703	143.5	175	150	723	136.5	175	142	708	148.3	175	156	728
		HIGH	141.0	175	147	743	152.8	200	161	763	145.8	175	153	748	157.6	200	167	768
		STD	64.9	80	68	322	71.1	06	75	334	67.1	06	70	324	73.3	06	78	336
26	460-3-60	MED	68.9	06	73	359	75.1	06	80	371	71.1	06	75	361	77.3	100	82	373
		нідн	72.1	06	76	379	78.3	100	83	391	74.3	06	79	381	80.5	100	86	393
		STD	53.9	60	56	235	58.7	02	62	243	55.6	70	58	237	60.4	80	64	245
	575-3-60	MED	55.6	20	58	262	60.4	80	64	270	57.3	70	60	264	62.1	80	99	272
		нідн	59.3	20	62	273	64.1	80	68	281	61.0	80	64	275	65.8	80	70	283

Legend and Notes for Tables 26 and 27

LEGEND:		
BRKR	-	Circuit breaker
C.O.	-	Convenience outlet
DISC.	-	Disconnect
FLA	-	Full load amps
LRA	-	Locked rotor amps
MCA	-	Minimum circuit amps
P.E.	-	Power exhaust
Pwrd fr/ unit	-	Powered from unit
PWRD C.O.	-	Powered convenience outlet
UNPWR C.O.	-	Unpowered convenience outlet
NOTES:		

Example: Supply voltage is 230-3-60

Determine maximum deviation from average voltage.

(AB) 227 - 224 = 3 v (BC) 231 - 227 = 4 v (AC) 227 - 226 = 1 v Maximum deviation is 4 v.

Determine percent of voltage imbalance.

% Voltage Imbalance = 100 x
$$\frac{4}{227}$$

= 1.76%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be fuse or circuit breaker.

2. For 208/230 v units, where one value is shown it is the same for either 208 or 230 volts.

3. Unbalanced 3-Phase Supply Voltage

% Voltage Imbalance

Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percentage of voltage imbalance.

= 100 x <u>average voltage</u>

Smoke Detectors

Smoke detectors are available as factory-installed options on 48LC 14-26 models. Smoke detectors may be specified for Supply Air only or for Return Air without or with economizer or in combination of Supply Air and Return Air. The unit is factory-configured for immediate smoke detector shutdown operation; additional wiring or modifications to unit's Integrated Staging Control (ISC) board may be necessary to complete the unit and smoke detector configuration to meet project requirements.

Return Air Sensor Tube Installation -

The return air sampling tube is shipped in the unit's supply fan section, attached to the blower housing (see Fig. 63. Its operating location is in the return air section of the unit (see Fig. 64, unit without economizer, or Fig. 65, unit with economizer), inserted into the return air sensor module housing which protrudes through the back of the control box.

To install the return air sensor sampling tube:

- 1. Remove the tube from its shipping location.
- 2. Open the unit end to access the return air sensor (located on right-hand partition)
- 3. Orient the tube's sampling holes into the return air flow direction. For vertical application, position the sampling holes on the bottom of the tube, facing into the bottom return duct opening. For horizontal application, position the sampling holes on the side of the tube, facing the unit's end panel.
- 4. Insert the sampling tube into the return air sensor module until the tube snaps into position.
- 5. Replace end panel or outside air hood.

Smoke Detector Test Magnet —

Locate the magnet; it is shipped in the control box area.

Additional Application Data —

Refer to Factory Installed Smoke Detectors for Small and Medium Rooftop Units 2 to 25 Tons for discussions on additional control features of these smoke detectors including multiple unit coordination.

Step 13 — Install Accessories

Available accessories include:

Roof Curb (must be installed before unit) EconoMi\$er[®] X (with control) Power Exhaust Outdoor enthalpy sensor Differential enthalpy sensor CO₂ sensor Temperature and Humidity sensors Louvered hail guard Phase monitor control

Refer to separate installation instructions for information on installing these accessories. See Price Pages for a complete list of field-installed accessories.

Fig. 63 - Typical Supply Air Smoke Detector Sensor Location

Fig. 64 - Return Air Sampling Tube Location in Unit without Economizer

Fig. 65 - Return Air Sampling Tube Location in Unit with Economizer

Step 14 — Check Belt Tension

Measure the belt span length as shown in Fig. 66. Calculate the required deflection by multiplying the belt span length by 1/64. For example, if the belt span length is 32 inches: $32 \times 1/64 = 1/2$ inch deflection.

Belt Force - Deflection Method -

Check the belt tension with a spring-force belt force deflection gauge.

1. Place a straightedge along the belt between the two pulleys. Measure the distance between the motor shaft and the blower shaft.

- 2. Set the tension gauge to the desired tension (see Table 1 in Fig. 66). Place the large O-ring at that point.
- 3. Press the tension checker downward on the belt until the large O-ring is at the bottom of the straightedge.
- 4. Adjust the belt tension as needed.

Adjust belt tension by loosing the motor mounting plate front bolts and rear bolt (see Fig. 67 on page 82) and sliding the plate towards the fan (to reduce tension) or away from the fan (to increase tension). Ensure the blower shaft and motor shaft are parallel to each other (pulleys aligned). Tighten all bolts securely when finished.

C160146

Fig. 66 - V-Belt Force Label

Fig. 67 - Belt Drive Motor Mounting

C11504

Pre-Start and Start-Up

This completes the mechanical installation of the unit. Refer to the unit's Service and Maintenance manual for detailed Pre-Start and Start-up instructions.

618

Printed in U.S.A.

UNIT START-UP CHECKLIST (Remove and Store in Job File)

<u>NOTE:</u> To avoid injury to personnel and damage to equipment or property when completing the procedures listed in this start-up checklist, use good judgement, follow safe practices, and adhere to the safety considerations/information as outlined in the preceding sections of this Installation Instructions document.

MODEL NO .:

SERIAL NO.:

I. PRE-START-UP

- \square VERIFY THAT ALL PACKAGING MATERIALS HAVE BEEN REMOVED FROM UNIT
- □ VERIFY INSTALLATION OF OUTDOOR AIR HOOD
- $\hfill\square$ VERIFY INSTALLATION OF FLUE EXHAUST AND INLET HOOD
- □ VERIFY THAT CONDENSATE CONNECTION IS INSTALLED PER INSTRUCTIONS
- □ VERIFY THAT ALL ELECTRICAL CONNECTIONS AND TERMINALS ARE TIGHT
- □ VERIFY GAS PRESSURE TO UNIT GAS VALVE IS WITHIN SPECIFIED RANGE
- □ CHECK GAS PIPING FOR LEAKS
- □ CHECK THAT INDOOR-AIR FILTERS ARE CLEAN AND IN PLACE
- $\hfill\square$ CHECK THAT OUTDOOR AIR INLET SCREENS ARE IN PLACE
- □ VERIFY THAT UNIT IS LEVEL
- □ CHECK FAN WHEELS AND PROPELLER FOR LOCATION IN HOUSING/ORIFICE AND VERIFY SETSCREW IS TIGHT
- $\hfill\square$ VERIFY THAT FAN SHEAVES ARE ALIGNED AND BELTS ARE PROPERLY TENSIONED
- □ VERIFY THAT SCROLL COMPRESSORS ARE ROTATING IN THE CORRECT DIRECTION
- □ VERIFY INSTALLATION OF THERMOSTAT
- □ VERIFY THAT CRANKCASE HEATERS HAVE BEEN ENERGIZED FOR AT LEAST 24 HOURS

II. START-UP

ELECTRICAL

SUPPLY VOLTAGE	L1-L2	L2-L3	L3-L1
COMPRESSOR AMPS 1	L1	L2	L3
COMPRESSOR AMPS 2	L1	L2	L3
SUPPLY FAN AMPS	L1	L2	L3
TEMPERATURES			
OUTDOOR-AIR TEMPERATU	RE	°F DB (DRY BULB	
RETURN-AIR TEMPERATUR	E	°F DB	°F WB (WET BULB)
COOLING SUPPLY AIR TEN	MPERATURE	°F	
GAS HEAT SUPPLY AIR		°F	
PRESSURES			
GAS INLET PRESSURE		IN. WG	
GAS MANIFOLD PRESSUF	E STAGE 1	IN. WG	
	STAGE 2	IN. WG	
REFRIGERANT SUCTION	CIRCUIT A	PSIG	
	CIRCUIT B	PSIG	
REFRIGERANT DISCHARG	GE CIRCUIT A	PSIG	
	CIRCUIT B	PSIG	
□ VERIEV REERIGERANT CHA	RGE USING CHARGI	NG CHARTS	

□ VERIFY REFRIGERANT CHARGE USING CHARGING CHARTS

GENERAL

□ ECONOMIZER MINIMUM VENT AND CHANGEOVER SETTINGS TO JOB REQUIREMENTS (IF EQUIPPED)

 $\hfill \Box$ verify smoke detector unit shutdown by utilizing magnet test

III. HUMIDI-MIZER[®] SYSTEM START-UP

NOTE: Units equipped with either SystemVu[™] or RTU-Open controls have Service Test menus or modes that can assist with the Humidi-MiZer System Start-Up function and provide the means to make the observations listed for this start-up.

STEPS

- □ 1. CHECK CTB FOR JUMPER 5, 6, 7 JUMPER 5, 6, 7 MUST BE CUT AND OPEN
- □ 2. OPEN HUMIDISTAT CONTACTS
- \Box 3. START UNIT IN COOLING (CLOSE Y1)

OBSERVE AND RECORD

A. SUCTION PRESSURE	PSIG	PSIG
B. DISCHARGE PRESSURE	PSIG	PSIG
C. ENTERING AIR TEMPERATURE	°F	°F
D. LIQUID LINE TEMPERATURE AT OUTLET OR REHEAT COIL	°F	°F

- E. CONFIRM CORRECT ROTATION FOR COMPRESSOR
- F. CHECK FOR CORRECT RAMP-UP OF OUTDOOR FAN MOTOR AS CONDENSER COIL WARMS
- □ 4. CHECK UNIT CHARGE PER CHARGING CHART
- □ 5. SWITCH UNIT TO HIGH-LATENT MODE (SUBCOOLER) BY CLOSING HUMIDISTAT WITH Y1 CLOSED OPSERVE

OBSERVE

- □ A. REDUCTION IN SUCTION PRESSURE (5 TO 7 PSI EXPECTED)
- B. DISCHARGE PRESSURE UNCHANGED
- □ C. LIQUID TEMPERATURE DROPS TO 50 TO 55°F RANGE
- D. LSV SOLENOID ENERGIZED (VALVE CLOSES)
- □ 6. SWITCH UNIT TO DEHUMID (REHEAT) BY OPENING Y1

OBSERVE

- □ A. SUCTION PRESSURE INCREASES TO NORMAL COOLING LEVEL
- B. DISCHARGE PRESSURE DECREASES (35 TO 50 PSI)
- C. LIQUID TEMPERATURE RETURNS TO NORMAL COOLING LEVEL
- D. LIQUID SOLENOID VALVE (LSV) ENERGIZED (VALVE CLOSES)
- E. DISCHARGE SOLENOID VALVE (DSV) ENERGIZED, VALVE OPENS
- ☐ 7. WITH UNIT IN DEHUMID MODE CLOSE W1 COMPRESSOR AND OUTDOOR FAN STOP; LSV AND DSV SOLENOIDS DE-ENERGIZED
- □ 8. OPEN W1 RESTORE UNIT TO DEHUMID MODE
- □ 9. OPEN HUMIDISTAT INPUT COMPRESSOR AND OUTDOOR FAN STOP; LSV AND DSV SOLENOIDS DE-ENERGIZED

□ 10. RESTORE SETPOINTS FOR THERMOSTAT AND HUMIDISTAT

REPEAT PROCESS FOR 2 COMPRESSOR SYSTEMS