

Installation Instructions

TABLE OF CONTENTS

SAFETY CONSIDERATIONS
INSTALLATION
Step 1 - Plan for Unit Location
Step 2 - Provide Unit Support
Step 3 - Rig and Place Unit
Step 4 - Field Fabricate Ductwork
Step 5 - Make Unit Duct Connections
Step 6 - Install Flue Hood and Inlet Hood 11
Step 7 - Install External Trap for Condensate Drain 13
Step 8 - Install Gas Piping
Step 9 - Make Electrical Connections
Step 10 - Optional EconoMi\$er IV
Step 11 - Install All Accessories
PRE-START UP
START-UP
SERVICE 50-60
Cleaning
Lubrication
Evaporator Fan Service and Replacement
Evaporator Fan Performance Adjustment
Evaporator Fan Belt Tension Adjustment 53
Condenser-Fan Adjustment
Verify Sensor Performance
Economizer Operation During Power Failure 53
Evacuation
Refrigerant Charge
Gas Valve Adjustment
High Altitude
LP (Liquid Propane) Gas Use 56
Main Burners
Filter Drier
Protective Devices
Relief Devices
Control Circuit 24-V
Replacement Parts
Diagnostic LEDs
TROUBLESHOOTING

Unit Iroubleshooting	01
EconoMi\$er IV Troubleshooting	64
Phase Loss Protection	65
UNIT START-UP CHECKLIST	66

SAFETY CONSIDERATIONS

Improper installation, adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical shock, or other conditions which may cause personal injury or property damage. Consult a qualified installer, service agency, or your distributor or branch for information or assistance. The qualified installer or agency must use factory-authorized kits or accessories when modifying this product. Refer to the individual instructions packaged with kits or accessories when installing.

Follow all safety codes. Wear safety glasses and work gloves. Use quenching cloth for brazing operations. Have fire extinguisher available. Read these instructions thoroughly and follow all warnings or cautions attached to the unit. Consult local building codes and National Electric Code (NEC) for special requirements. Recognize safety information. This is the safety-alert symbol

⚠. When you see this symbol on the unit and in instruction manuals, be alert to the potential for personal injury.

Understand the signal words DANGER, WARNING, CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which **will** result in severe personal injury or death. WARNING signifies hazards which **could** result in personal injury or death. CAUTION is used to identify unsafe practices which **may** result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which **will** result in enhanced installation, reliability, or operation.

Installation and servicing of air-conditioning equipment can be hazardous due to system pressure and electrical components. Only trained and qualified service personnel should install, repair, or service air-conditioning equipment.

Untrained personnel can perform the basic maintenance functions of cleaning coils and filters and replacing filters. All other operations should be performed by trained service personnel. When working on air-conditioning equipment, observe precautions in the literature, tags and labels attached to the unit, and other safety precautions that may apply.

A WARNING

ELECTRICAL OPERATION HAZARD

Failure to follow this warning could result in personal injury or death.

Before installing or servicing unit, always turn off all power to unit. There may be more than 1 disconnect switch. Turn off accessory heater power, if applicable.

A WARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could result in personal injury or equipment damage.

Puron® refrigerant systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on Puron refrigerant equipment.

A WARNING

FIRE, EXPLOSION HAZARD

Failure to follow this warning could result in personal injury, death and/or property damage.

Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance. What to do if you smell gas:

DO NOT try to light any appliance.

DO NOT touch any electrical switch, or use any phone in your building.

IMMEDIATELY call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions.

If you cannot reach your gas supplier, call the fire department.

WARNING

FIRE, EXPLOSION HAZARD

Failure to follow this warning could result in personal injury or death.

Disconnect gas piping from unit when pressure testing at pressure greater than 0.5 psig. Pressures greater than 0.5 psig will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than 0.5 psig, it *must* be replaced before use. When pressure testing field-supplied gas piping at pressures of 0.5 psig or less, a unit connected to such piping must be isolated by closing the manual gas valve(s).

IMPORTANT: Units have high ambient operating limits. If limits are exceeded, the units will automatically lock the compressor out of operation. Manual reset will be required to restart the compressor.

INSTALLATION

Step 1 — Plan for Location

Select a location for the unit and its support system (curb or other) that provides minimum clearances required for safety, unit performance and service access below, around and above unit as specified in unit drawings. Consider also the effect of adjacent units.

Do not install unit in an indoor location. Do not locate air inlets near exhaust vents or other sources of contaminated air. For proper unit operation, adequate combustion and ventilation air must be provided in accordance with Section 5.3 (Air for Combustion and Ventilation) of the National Fuel Gas Code, ANSI Z223.1 (American National Standards Institute). Although unit is weatherproof, guard against water from higher level runoff and overhangs.

Locate mechanical draft system flue assembly at least 4 ft from any opening through which combustion products could enter the building, and at least 4 ft from any adjacent building (or per local code). Locate the flue assembly at least 10 ft (or per local code) from an adjacent unit's fresh air intake hood if within 3 ft of same elevation. When unit is located adjacent to public walkways, flue assembly must be at least 7 ft above grade.

Select a unit mounting system that provides adequate height to allow installation of condensate trap per requirements. Refer to Step 7 — Install External Trap for Condensate Drain for required trap dimensions.

Roof Mount

Check building codes for weight distribution requirements. Unit operating weight is shown in Tables 1 and 2.

Step 2 — Provide Unit Support

Roof Curb

Assemble or install accessory roof curb in accordance with instructions shipped with this accessory. See Fig. 1 and 2. Install insulation, cant strips, roofing, and counter flashing as shown. Ductwork can be installed to roof curb before unit is set in place. Ductwork must be attached to curb and not to the unit. Curb must be level. This is necessary to permit unit drain to function properly. Unit leveling tolerance is \pm $^{1}/_{16}$ in. per linear ft in any direction. Refer to Accessory Roof Curb Installation Instructions for additional information as required. When accessory roof curb is used, unit may be installed on class A, B, or C roof covering material. Carrier roof curb accessories are for flat roofs or slab mounting.

IMPORTANT: The gasketing of the unit to the roof curb is critical for a watertight seal. Install gasket with the roof curb as shown in Fig. 1, 2, and 3. Improperly applied gasket can also result in air leaks and poor unit performance. Do not slide unit to position on roof curb.

Alternate Unit Support

When a curb cannot be used, install unit on a noncombustible surface. Support unit with sleepers, using unit curb support area. If sleepers cannot be used, support long sides of unit with a minimum of 3 equally spaced 4-in. x 4-in. pads on each side.

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage.

All panels must be in place when rigging.

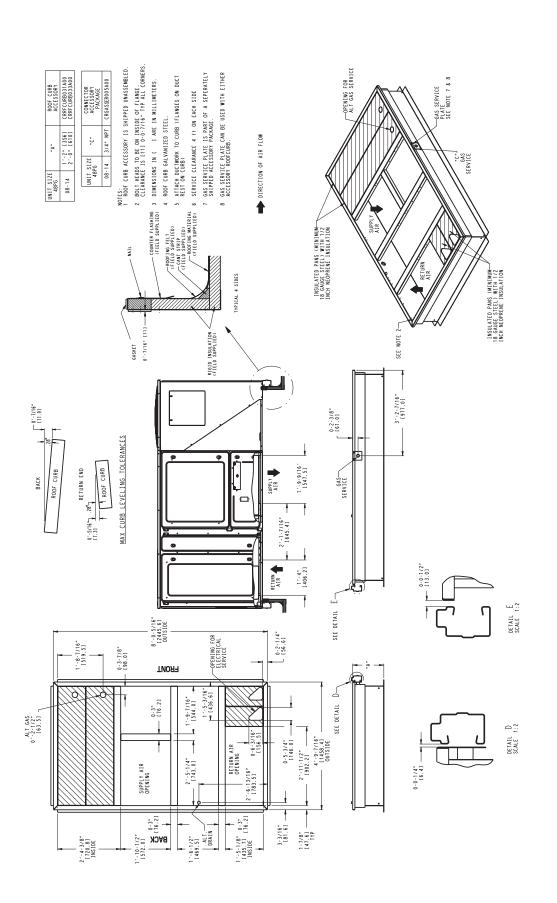


Fig. 1 - Roof Curb Details (48PG08-14)

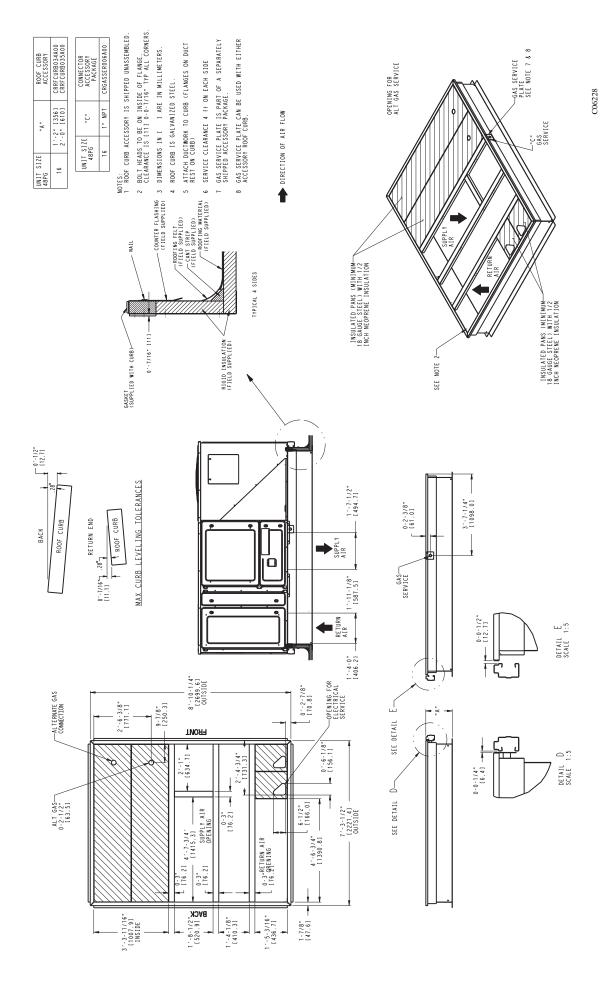


Fig. 2 - Roof Curb Details (48PG16)

Step 3 — Rig and Place Unit

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution could result in unit and/or property damage.

Do not slide unit to position when it is sitting on the curb. Curb gasketing material may be damaged and leaks may result.

Inspect unit for transportation damage. See Tables 1 and 2 for physical data. File any claim with transportation agency.

Do not drop unit; keep upright. Use wooden top skid or spreader bars over unit to prevent sling or cable damage. Rollers may be used to move unit across a roof. Level by using unit rail as a reference; leveling tolerance is \pm $^{1}/_{16}$ in. per linear ft in any direction. See Fig. 3 for additional information. Unit rigging weight is shown in Fig. 3.

Rigging holes are provided in the unit base rails as shown in Fig. 2. Refer to rigging instructions on unit.

Installation Onto Curb

The 48PG units are designed to fit on the accessory full perimeter curb. Correct placement of the unit onto the curb is critical to operating performance. To aid in correct positioning, place unit on roof curb to maintain $^{1}/_{4}$ -in. gap between the inside of rail and roof curb on long sides and a $^{1}/_{2}$ -in. gap between the inside of rail and roof curb on both duct and condenser ends. Refer to Fig. 1, 2, 3 and 4, to assure proper duct opening alignment.

NOTE: Before positioning unit on curb, make sure bottom drain connection plug is tight. See Step 7 — Install External Trap for Condensate Drain for more information.

Slab Mount (Horizontal Units Only)

Provide a level concrete slab that extends a minimum of 6-in. beyond unit cabinet. Install a gravel apron in front of condenser-coil air inlet to prevent grass and foliage from obstructing airflow.

NOTE: Horizontal units may be installed on a roof curb if required.

ACCESS PANEL MUST BE IN PLACE WHEN RIGGING.

Hook rigging shackles through holes in base rail, as shown in Detail A. Holes in base rails are centered around the unit center of gravity. Use wooden top skid, when rigging, to prevent rigging straps from damaging unit.

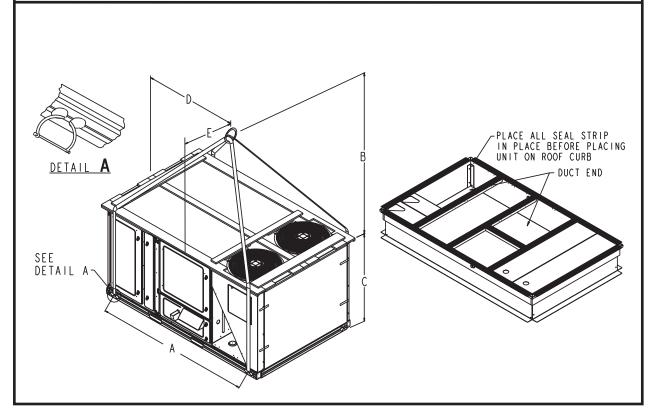


Table 1 — Physical Data (48PG08-14)

		11 Data (401 G00-1			
BASE UNIT 48PG		08	09	12	14
NOMINAL CAPACITY (Tons)		7 ¹ / ₂	8 ¹ / ₂	10	12 ¹ / ₂
OPERATING WEIGHT (lb)					
Unit*		1217	1224	1324	1400
Economizer					
Vertical		57	57	57	57
Horizontal		59	59	59	59
Roof Curb					- 55
14-in.		180	180	180	180
24-in.		268	268	268	268
		208			208
COMPRESSOR			Fully Herm		_
Quantity		2	2	2	2
Oil Type Sys A		Copeland 3MA	Copeland 3MA	Copeland 3MA	Copeland 3MA
Sys B		Copeland 3MA	Copeland 3MA	Copeland 3MA	Copeland 3MA
Number of Refrigerant Circuits		2	2	2	2
Oil (oz) Sys A		42	42	66	56
Sys B		42	42	66	56
REFRIGERANT TYPE		72	R-410A (Puron		
		TM/			T0/
Expansion Device		TXV	TXV	TXV	TXV
Operating Charge (lb) Sys A		11.8	11.3	13.7	17.2
Sys B		11.8	11.3	13.7	17.2
Operating Charge Total All Systems (lb)		23.5	22.6	27.4	34.4
CONDENSER COIL		Enha	nced Copper Tubes, Alur	ninum Lanced Fins. Face	Split
Condenser A (Outer)			1 ''	,	Γ'
RowsFins/in.		217	217	217	317
Face Area (sq ft)		17.4	17.4	17.4	17.4
Condenser B (Inner)					
RowsFins/in.		217	217	217	317
Face Area (sq ft)		17.4	17.4	17.4	17.4
CONDENSER FAN			Prop	eller	
QuantityDiameter (in.)		224	224	224	224
Nominal Cfm (Total, all fans)		7204	7204	8241	7300
Motor Hp		1/4	1/4	1/3	1/3
Nominal Rpm		1100	1100	1100	1100
EVAPORATOR COIL			ed Copper Tubes, Alumin		
RowsFins/in.		315	315	415	415
Face Area (sq ft)		14.9	14.9	14.9	14.9
EVAPORATOR FAN			Centrifugal Ty	pe. Belt Drive	
QuantitySize (in.)	Low	115 x 15	115 x 15	115 x 15	115 x 15
additity5125 (iii.)	High	115 x 15	115 x 15	115 x 15	115 x 15
Time Drive					
Type Drive	Low	Belt	Belt	Belt	Belt
	High	Belt	Belt	Belt	Belt
Nominal Cfm		3000	3400	4000	5000
Maximum Continuous Bhp	Low	2.4	2.4	3.1	3.7
·	High	3.1	3.7	3.7	5.25
Motor Nominal Rpm		1725	1725	1725	1725
Motor Frame Size	Low	56Y	56Y	56Y	56Y
Wiotor Frame Size		56Y	56Y	56Y	56Y
	High				
Fan Rpm Range	Low	568-771	568-771	690-893	690-893
	High	812-1015	812-1015	852-1055	852-1055
Motor Bearing Type		Ball	Ball	Ball	Ball
Maximum Fan Rpm		1600	1600	1600	1600
Motor Pulley Pitch Diameter Range (in.)	Low	2.8-3.8	2.8-3.8	3.4-4.4	3.4-4.4
g- ()	High	4.0-5.0	4.0-5.0	4.6-5.6	4.6-5.6
Fan Pulley Pitch Diameter	Low	8.5	8.5	8.5	8.5
Tail Fulley Filcit Diameter					
	High	8.5	8.5	8.5	8.5
Nominal Motor Shaft Diameter (in.)	Low	5/8	5/8	7/8	7/8
	High	⁷ / ₈	⁷ / ₈	⁷ / ₈	⁷ / ₈
BeltPitch Length (in.)	Low	63.3	63.3	63.3	63.3
	High	65.3	65.3	65.3	65.3
BeltType	Low	AX	AX	AX	AX
71	High	AX	AX	AX	AX
Pulley Center Line Distance Min. (in.)	Low	21.0	21.0	21.0	21.0
r uney Center Line Distance Will. (III.)					
B # 0 + 1	High	21.0	21.0	21.0	21.0
Pulley Center Line Distance Max. (in.)	Low	23.4	23.4	23.4	23.4
	High	23.4	23.4	23.4	23.4
Chood Change per Full Time of Mariable Bullion Florida (mari	Low	41	41	41	41
Speed Change per Full Turn of Movable Pulley Flange (rpm)	High	44		44	41
		41	41	41	
	Low	5	41 5	5	5
Movable Pulley Maximum Full Turns from Closed Position	Low	5	5	5	5
<u> </u>	Low High	5 5	5 5	5 5	5 5
Movable Pulley Maximum Full Turns from Closed Position Factory Pulley Setting (rpm)	Low High Low	5 5 568	5 5 568	5 5 690	5 5 690
Factory Pulley Setting (rpm)	Low High	5 5 568 812	5 5 568 812	5 5 690 852	5 5 690 852
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.)	Low High Low	5 5 568	5 5 568	5 5 690	5 5 690
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION	Low High Low	5 5 568 812	5 5 568 812	5 5 690 852	5 5 690 852
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch	Low High Low	5 5 568 812	5 5 568 812	5 5 690 852	5 5 690 852
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION	Low High Low	5 5 568 812	5 5 568 812	5 5 690 852	5 5 690 852
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch	Low High Low High	5 5 568 812 1	5 5 568 812 1	5 5 690 852 1	5 5 690 852 1
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch	Low High Low High Low High	5 5 5 568 812 1	5 5 568 812 1 225 225	5 5 690 852 1	5 5 690 852 1 225
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F)	Low High Low High Low Med High	5 5 568 812 1 1 225 225 225 225	5 5 568 812 1 1 225 225 225	5 5 690 852 1 1 225 225 225 225	5 5 690 852 1 1 225 225 225
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch	Low High Low High Low High Low Med High Low	5 5 568 812 1 1 225 225 225 225 225	5 5 568 812 1 1 225 225 225 225 175	5 5 690 852 1 1 225 225 225 225 175	5 5 690 852 1 1 225 225 225 225 175
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F)	Low High Low High Low Med High Low Med High Low Med	5 5 568 812 1 1 225 225 225 225 175 175	5 5 568 812 1 1 225 225 225 225 175	5 5 690 852 1 225 225 225 225 175	5 5 690 852 1 1 225 225 225 225 175 175
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F)	Low High Low High Low Med High Low Med High	5 5 5 568 812 1 1 225 225 225 225 175 175	5 5 5 812 1 1 225 225 225 225 175 175	5 5 690 852 1 225 225 225 225 175 175	5 5 690 852 1 1 225 225 225 225 175 175
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F)	Low High Low High Low Med High Low Med High PGD/L	5 5 568 812 1 1 225 225 225 225 175 175 175 175 95,200/136,000	5 5 568 812 1 1 225 225 225 175 175 175 175 95,200/136,000	5 5 690 852 1 1 225 225 225 175 175 175 175 126,700/181,000	5 5 690 852 1 1 225 225 225 175 175 175 126,700/181,000
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F)	Low High Low High Low Med High Low Med High Low Med High PGD/L PGE/M	5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000	5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000	5 5 690 852 1 1 225 225 225 225 175 175 175 126,700/181,000 158,200/226,000	5 5 690 852 1 1 225 225 225 175 175 175 175 126,700/181,000 158,200/226,000
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F)	Low High Low High Low Med High Low Med High PGD/L	5 5 568 812 1 1 225 225 225 225 175 175 175 175 95,200/136,000	5 5 568 812 1 1 225 225 225 175 175 175 175 95,200/136,000	5 5 690 852 1 1 225 225 225 175 175 175 175 126,700/181,000	5 5 690 852 1 1 225 225 225 175 175 175 175 126,700/181,000
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F) Gas Input (Btuh) Stage 1 /Stage 2	Low High Low High Low Med High Low Med High Low Med High PGD/L PGE/M	5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000	5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000	5 5 690 852 1 1 225 225 225 225 175 175 175 126,700/181,000 158,200/226,000	5 5 690 852 1 1 225 225 225 175 175 175 175 126,700/181,000 158,200/226,000
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F) Gas Input (Btuh) Stage 1 /Stage 2 Burner Orifice Diameter (indrill size)†	Low High Low High Low Med High Low Med High Low Med High PGD/L PGE/M	5 5 5 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000	5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000	5 5 690 852 1 225 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000	5 690 852 1 1 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F) Gas Input (Btuh) Stage 1 /Stage 2 Burner Orifice Diameter (indrill size)† Natural Gas	Low High Low High Low Med High Low Med High Low Med High PGD/L PGE/M	5 5 568 812 1 1 225 225 225 175 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000	5 5 5 812 1 1 225 225 225 175 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000	5 5 690 852 1 1 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943	5 5 690 852 1 1 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F) Gas Input (Btuh) Stage 1 /Stage 2 Burner Orifice Diameter (indrill size)† Natural Gas Liquid Propane	Low High Low High Low Med High Low Med High Low Med High PGD/L PGE/M	5 5 5 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000	5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000	5 5 690 852 1 225 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000	5 690 852 1 1 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F) Gas Input (Btuh) Stage 1 /Stage 2 Burner Orifice Diameter (indrill size)† Natural Gas Liquid Propane Thermostat Heat Anticipator Setting (amps)	Low High Low High Low Med High Low Med High Low Med High PGD/L PGE/M	5 5 5 812 1 1 225 225 225 225 175 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000 0.08943 0.07050	5 5 5 812 1 1 225 225 225 225 175 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000	5 5 690 852 1 1 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050	5 5 690 852 1 1 225 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F) Gas Input (Btuh) Stage 1 /Stage 2 Burner Orifice Diameter (indrill size)† Natural Gas Liquid Propane Thermostat Heat Anticipator Setting (amps) First Stage	Low High Low High Low Med High Low Med High Low Med High PGD/L PGE/M	5 5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000 0.08943 0.07050	5 5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000 0.08943 0.07050	5 5 690 852 1 225 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050	5 5 690 852 1 1 225 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F) Gas Input (Btuh) Stage 1 /Stage 2 Burner Orifice Diameter (indrill size)† Natural Gas Liquid Propane Thermostat Heat Anticipator Setting (amps) First Stage Second Stage	Low High Low High Low Med High Low Med High Low Med High PGD/L PGE/M	5 5 5 812 1 1 225 225 225 225 175 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000 0.08943 0.07050	5 5 5 812 1 1 225 225 225 225 175 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000	5 5 690 852 1 1 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050	5 5 690 852 1 1 225 225 225 225 175 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F) Gas Input (Btuh) Stage 1 /Stage 2 Burner Orifice Diameter (indrill size)† Natural Gas Liquid Propane Thermostat Heat Anticipator Setting (amps) First Stage	Low High Low High Low Med High Low Med High Low Med High PGD/L PGE/M	5 5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000 0.08943 0.07050	5 5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000 0.08943 0.07050	5 5 690 852 1 225 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050	5 5 690 852 1 1 225 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F) Gas Input (Btuh) Stage 1 /Stage 2 Burner Orifice Diameter (indrill size)† Natural Gas Liquid Propane Thermostat Heat Anticipator Setting (amps) First Stage Second Stage Manifold Pressure (in. wg)	Low High Low High Low Med High Low Med High Low Med High PGD/L PGE/M	5 5 5 568 812 1 1 225 225 225 175 175 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000 0.08943 0.07050	5 5 5 812 1 1 225 225 225 175 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000 0.08943 0.07050	5 5 690 852 1 225 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050	5 5 690 852 1 1 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050
Factory Pulley Setting (rpm) Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION Rollout Switch Open Temperature (F) Closed Temperature (F) Gas Input (Btuh) Stage 1 /Stage 2 Burner Orifice Diameter (indrill size)† Natural Gas Liquid Propane Thermostat Heat Anticipator Setting (amps) First Stage Second Stage	Low High Low High Low Med High Low Med High Low Med High PGD/L PGE/M	5 5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000 0.08943 0.07050	5 5 5 568 812 1 1 225 225 225 225 175 175 175 95,200/136,000 126,700/181,000 158,200/226,000 0.08943 0.07050	5 5 690 852 1 1 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050	5 5 690 852 1 1 225 225 225 225 175 175 175 126,700/181,000 158,200/226,000 174,300/249,000 0.08943 0.07050

BASE UNIT 48PG	08	09	12	14
Gas Valve Quantity	1	1	1	1
Gas Supply Pressure Range (in. wg)	5.0-13.0	5.0-13.0	5.0-13.0	5.0-13.0
Field Gas Connection Size (in.)	3/4	3/4	3/4	3/4
HIGH-PRESSURE SWITCH (psig)				
Cutout	660 ± 10	660 ± 10	660 ± 10	660 ± 10
Reset (Auto.)	505 ± 20	505 ± 20	505 ± 20	505 ± 20
LOW-PRESSURE SWITCH (psig)				
Cutout	40 ± 7	40 ± 7	40 ± 7	40 ± 7
Reset (Auto.)	80 ± 7	80 ± 7	80 ± 7	80 ± 7
FREEZE PROTECTION THERMOSTAT (F)				
Cutout	30 ± 5	30 ± 5	30 ± 5	30 ± 5
Reset (Auto.)	45 ± 5	45 ± 5	45 ± 5	45 ± 5
RETURN-AIR FILTERS		Throw	away	
QuantitySize (in.)	420 x 25 x 2			

Table 2 — Physical Data (48PG16)

BASE UNIT 48PG		16
NOMINAL CAPACITY (Tons)		15
OPERATING WEIGHT (lb)		
Unit*		1895
EconoMizer		
Vertical		149
Horizontal		149
Roof Curb		
14-in.		240
24-in.		360
COMPRESSOR		Fully Hermetic Scroll
Quantity		3
Oil Type Sys A		Copeland 3MA
Sys B		Copeland 3MA
Sys C		Copeland 3MA
Number of Refrigerant Circuits		3
Oil (oz) Sys A		66
Sys B		66
Sys C		66
REFRIGERANT TYPE		R-410A (Puron® Refrigerant)
Expansion Device		TXV
Operating Charge (lb) Sys A		13.5 15.0
Sys B		
Sys C		15.0
Operating Charge Total All Systems (lb)		43.5
CONDENSER COIL		Enhanced Copper Tubes, Aluminum Lanced Fins, Face Spli
Condenser A (Outer)		
RowsFins/in.		217
Face Area (sq ft)		26.6
Condenser B (Inner)		
RowsFins/in.		217
Face Area (sq ft)		30.2
CONDENSER FAN		Propeller
QuantityDiameter (in.)		324
Nominal Cfm (Total, all fans)		12,500
Motor Hp		1/3
Nominal Rpm		1100
FI/A DODATOR COIL		Enhanced Copper Tubes, Aluminum Double-Wavy Fins, Face
EVAPORATOR COIL		Split
RowsFins/in.		315
Face Area (sq ft)		22.2
EVAPORATOR FAN		Centrifugal Type, Belt Drive
QuantitySize (in.)	Low	115x15, 112x12
, , ,	Mid-Low	115x15, 112x12
	High	115x15, 112x12
Type Drive	Low	Belt
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Mid-Low	Belt
	High	Belt
Nominal Cfm	піуп	6000
	Low	3.7
Maximum Continuous Bhp	Mid-Low	5.25
Matau France O'es	High	7.5
Motor Frame Size	Low	56
	Mid-Low	56
5 D D	High	S213T
Fan Rpm Range	Low	710- 879
	Mid-Low	872-1066
	High	1066-1260
Motor Bearing Type		Ball
Motor Pulley Pitch Diameter Min (in.)	Low	4.2
	Mid-Low	4.2
	High	4.2
Motor Pulley Pitch Diameter Max (in.)	Low	5.2
	Mid-Low	5.2
	High	6.2
Fan Pulley Pitch Diameter (in.)	Low	10.2
, , , ,	Mid-Low	8.5
	High	8.5
Nominal Motor Shaft Diameter (in.)	Low	7/8
Nominal Motor Shart Diameter (iii.)	Mid-Low	7/8

Quantity...Size (in.)
LEGEND
TXV — Thermostatic Expansion Valve
* Aluminum evaporator coil/aluminum condenser coil.
† For applications less than 2000 ft elevation.

BASE UNIT 48PG		16
BeltPitch Length (in.)	Low	49.3
Bolti Roll Lollgar (III.)	Mid-Low	47.8
	High	43.8
BeltType	Low	AX
Бек туре	Mid-Low	BX
Dellar Control in a Distance Min (in)	High	BX
Pulley Center Line Distance Min. (in.)	Low	14.2
	Mid-Low	10.8
	High	8.6
Pulley Center Line Distance Max. (in.)	Low	10.8
	Mid-Low	14.2
	High	12
Speed Change per Full Turn of Movable Pulley Flange (rpm)	Low	34
· ,	Mid-Low	41
	High	41
Movable Pulley Maximum Full Turns from Closed Position	Low	5
1011	Mid-Low	5
	High	5
Factory Pulley Setting (rpm)	Low	812
ractory rulley Setting (Ipin)	Mid-Low	983
	High	1191
For Chaff Diameter at Bulley (in)	підіі	
Fan Shaft Diameter at Pulley (in.) GAS HEAT SECTION		1 ³ / ₁₆
Rollout Switch		105
Open Temperature (F)	Low	195
	Med	195
	High	195
Closed Temperature (F)	Low	115
	Med	115
	High	115
Gas Input (Btuh) Stage 1/Stage 2	PGD/L	176,000/220,000
	PGE/M	248,000/310,000
	PGF/N	320,000/400,000
Burner Orifice Diameter (indrill size)†		
Natural Gas	Std	0.128530
Liquid Propane	Alt	0.101538
Thermostat Heat Anticipator Setting (amps)		
First Stage		.14
Second Stage		.20
Manifold Pressure (in. wg)	1	
Natural Gas	Std	3.0
Liquid Propane	Alt	3.0
Gas Valve Quantity		1
Gas Supply Pressure Range (in. wg)		5.0-13.0
Field Gas Connection Size (in.)		3/4
HIGH-PRESSURE SWITCH (psig)	 	14
Cutout		660 ± 10
Reset (Auto.)	 	505 ± 20
LOW-PRESSURE SWITCH (psig)		303 ± 20
Cutout	 	40 ± 7
	 	40 ± 7 80 ± 7
Reset (Auto.)		0U ± /
FREEZE PROTECTION THERMOSTAT (F)		00 5
Cutout		30 ± 5
Reset (Auto.)		45 ± 5
RETURN-AIR FILTERS		Throwaway
QuantitySize (in)		820 x 20 x 2
LEGEND		

TXV — Thermostatic Expansion Valve

* Aluminum evaporator coil/aluminum condenser coil.
† For applications less than 2000 ft elevation.

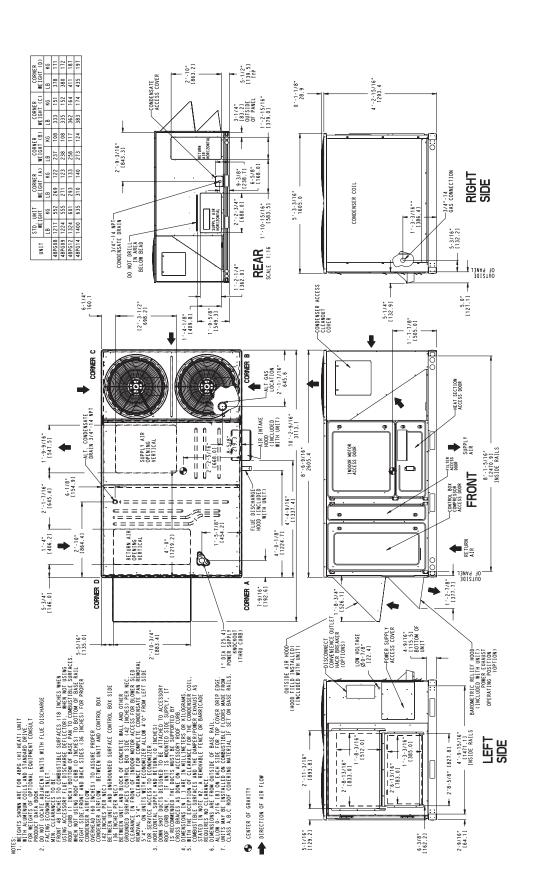


Fig. 4 - Base Unit Dimensions (48PG08-14)

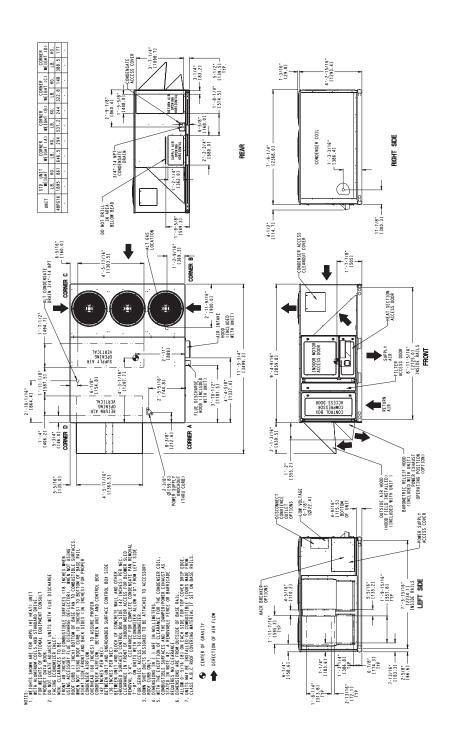


Fig. 5 - Base Unit Dimensions (48PG16)

Step 4 —Field Fabricate Ductwork

On vertical units, secure all ducts to roof curb and building structure. *Do not connect ductwork to unit.* For horizontal applications, field-supplied flanges should be attached to horizontal discharge openings and all ductwork secured to the flanges. Insulate and weatherproof all external ductwork, joints, and roof openings with counter flashing and mastic in accordance with applicable codes.

Ducts passing through an unconditioned space must be insulated and covered with a vapor barrier.

If a plenum return is used on a vertical unit, the return should be ducted through the roof deck to comply with applicable fire codes.

A minimum clearance is not required around ductwork. Cabinet return-air static pressure (a negative condition) shall not exceed 0.35 in. wg with economizer or 0.45 in. wg without economizer.

These units are designed for a minimum continuous return-air temperature in heating of 50° F (dry bulb), or an intermittent operation down to 45° F (dry bulb), such as when used with a night set-back thermostat.

To operate at lower return-air temperatures, a field-supplied outdoor-air temperature control must be used to initiate both stages of heat when the temperature is below 45° F. Indoor comfort may be compromised when these lower air temperatures are used with insufficient heating temperature rise.

Step 5 — Make Unit Duct Connections

Vertical Supply/Return Configuration

Unit is shipped in vertical supply/return configuration. Ductwork openings are shown in Fig. 1, 2, 4, and 5. Attach the ductwork to the roof curb. Do not attach duct directly to the unit.

A CAUTION

PERSONAL INJURY HAZARD

Failure to follow this caution may result in personal injury.

For vertical supply and return units, tools or parts could drop into ductwork and cause an injury. Install a 90° turn in the return ductwork between the unit and the conditioned space. If a 90° elbow cannot be installed, then a grille of sufficient strength and density should be installed to prevent objects from falling into the conditioned space.

Horizontal Supply/Return Applications (Sizes 08-14 Only)

Unit can be field-converted from vertical supply/return to horizontal supply/return. Remove all screws securing horizontal duct covers to duct panel. Save panels. Apply a bead of RTV around flange of duct cover (on painted side). Install duct covers in the vertical duct openings in the basepan with the insulation side up. Covers will drop into openings and can be secured using field-supplied self-tapping screws. Ductwork can be attached to duct flanges provided on unit. When securing ductwork to unit, do not drill in area below bead or above top edge of duct opening. For 16 size units, an accessory kit is available for field-converting vertical to horizontal supply/return. Refer to instructions provided with kit. Duct openings are shown in Fig. 1, 2, 4, and 5.

Step 6 —Install Flue Hood and Inlet Hood

Flue hood (smaller hood), inlet hood (larger hood), and screens are shipped inside the unit in the gas section. To install, open the gas section access door. The flue hood is attached to the gas section access door from the outside using the screws provided. See Fig. 6 - 9.

The inlet hood is installed by inserting the hood through the back of the gas section access door. Attach the hood by inserting the screws provided through the clearance holes in the gas section access door and into the intake hood.

NOTE: When properly installed, the flue hood will line up with the combustion fan housing exhaust. (See Fig. 10.)

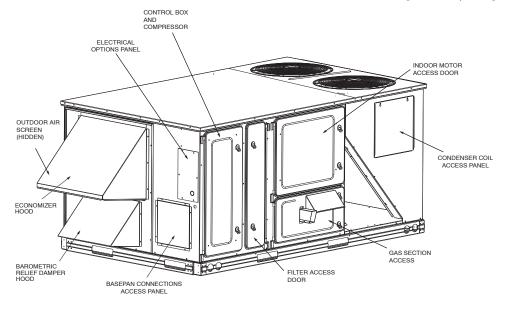


Fig. 6 - Panel and Filter Locations (48PG08-14)

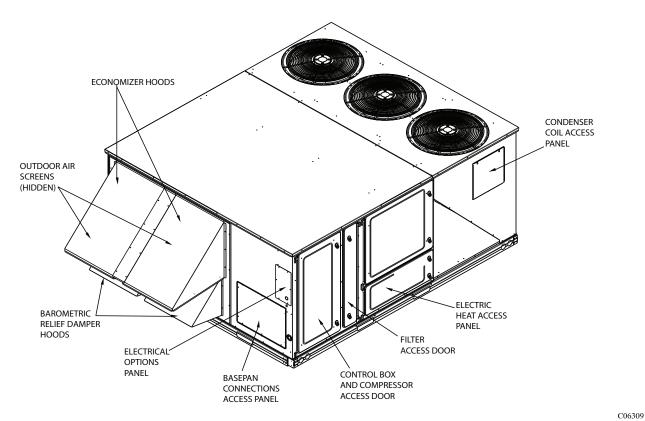


Fig. 7 - Panel and Filter Locations (48PG16)

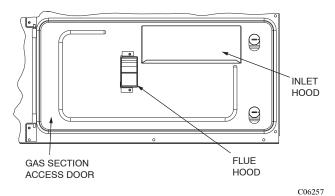


Fig. 8 - Flue and Inlet Hood Locations (48PG08-14)

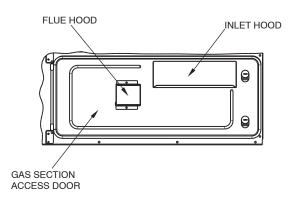


Fig. 9 - Flue and Inlet Hood Locations (48PG16)

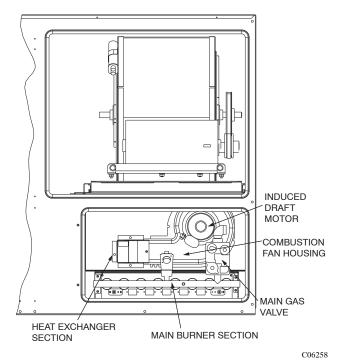


Fig. 10 - Typical Gas Heating Section (Sizes 08-14 Shown)

Step 7 —Install External Trap for Condensate Drain

The unit's ³/₄-in. condensate drain connections are located on the bottom and side of the unit. If the down drain is used, drill a minimum of 5/8-in. diameter hole but not larger than a 3/4-in. diameter hole through the drain pan. A dimple of 2 mm in diameter and 1.5 mm deep will be provided in the drain pan to help locate the drill bit and to start the hole. Do not cut through the PVC pipe threads. Unit discharge connections do not determine the use of drain connections; either drain connection can be used with vertical or horizontal applications. See Fig. 4 and 5 for locations.

When using the standard side drain connection, make sure the plug (red) covering the alternate bottom connection is tight before installing the unit. (See Fig. 11.)

To use the bottom drain connection for a roof curb installation, relocate the factory-installed plug (red) from the bottom connection to the side connection. A $^{1}/_{2}$ -in. socket extension can be used to remove the plug. (See Fig. 11.) The piping for the condensate drain and external trap can be completed after the unit is in place.

All units must have an external trap for condensate drainage. Install a trap at least 4-in. deep and protect against freeze-up. If drain line is installed downstream from the external trap, pitch the line away from the unit at 1-in. per 10 ft of run. Do not use a pipe size smaller than the unit connection $(^{3}/_{4}$ -in.). (See Fig. 12 and 13.)

The 48PG units are provided with a removable condensate pan for ease of cleaning. It is recommended that a union be placed between the unit and condensate drainage to ease the removal of the pan during servicing. Adequate clearance should be allowed if removal of condensate pan is required. Allow 64-in. (sizes 08-14) or 93-in. (size 16) between condensate pan access panel and any obstruction for complete removal.

Step 8 —Install Gas Piping

Unit is equipped for use with natural gas. Refer to local building codes, or in the absence of local codes, to ANSI Z223.1-latest year and addendum Z223.1A-latest year entitled HFGC. In Canada, installation must be in accordance with the CAN1.B149.1 and CAN1.B149.2 installation codes for gas burning appliances.

Support gas piping as shown in the table in Fig. 14. For example, a ³/₄-in. gas pipe must have one field-fabricated support beam every 8 ft. Therefore, an 18-ft long gas pipe would have a minimum of 3 support beams. See Fig. 14 for typical pipe guide and locations of external manual gas shutoff valve.

Install field-supplied manual gas shutoff valve with a $^{1}/_{8}$ -in. NPT pressure tap for test gauge connection at unit. The pressure tap is located on the gas manifold, adjacent to the gas valve. Field gas piping must include sediment trap and union. (See Fig. 15.) Install a field-supplied gas regulator.

A WARNING

FIRE, EXPLOSION HAZARD

Failure to follow this warning could result in personal injury or death.

Do not pressure test gas supply while connected to unit. Always disconnect union before servicing. High pressures can cause gas valve damage resulting in a hazardous condition.

IMPORTANT: Natural gas pressure at unit gas connection must not be less than 5.0 in. wg or greater than 13.0 in. wg for all heat sizes.

Size gas-supply piping for 0.5-in. wg maximum pressure drop. Do not use supply pipe smaller than unit gas connection.

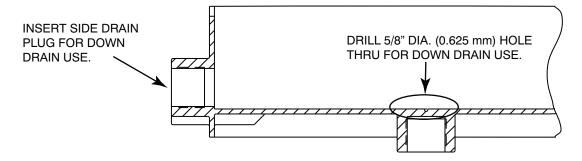


Fig. 11 - Condensate Drain Pan

C10321

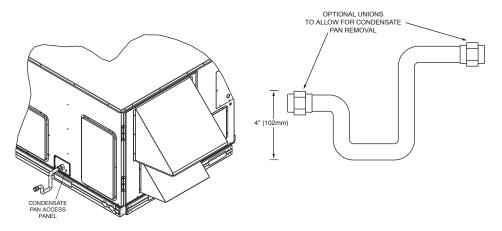
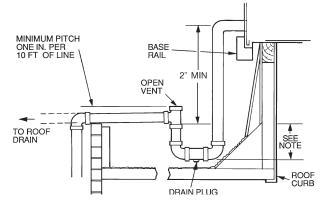
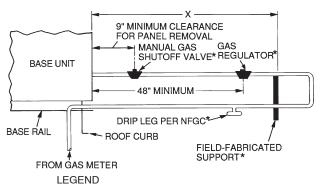




Fig. 12 - External Trap for Condensate Drain

NOTE: Trap should be deep enough to offset maximum unit static difference. A 4-in. trap is recommended.

Fig. 13 - Condensate Drain Piping Details

NFGC - National Fuel Gas Code

*Field supplied.

NOTE: Follow all local codes.

SPACING OF SUPPORTS

STEEL PIPE NOMINAL DIAMETER (in.)	SPACING OF SUPPORTS X DIMENSION (ft)
1/2	6
³ / ₄ or 1	8
11/4 or larger	10

C06115

C06235

Fig. 14 - Gas Piping Guide (With Accessory Thru-the-**Curb Service Connections**)

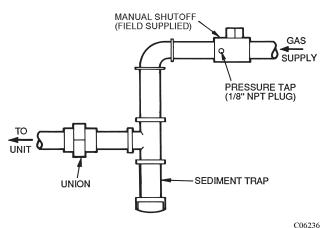


Fig. 15 - Field Gas Piping

Step 9 — Make Electrical Connections

Field Power Supply

All 208/230-v units are factory wired for 230-v power supply. If the 208/230-v unit is to be connected to a 208-v power supply, the transformer must be rewired by moving the black wire with the $\frac{1}{4}$ -in. female quick connect from the 230-volt connection and moving to the 200-volt ¹/₄-in. male terminal on the primary side of the transformer.

Refer to unit label diagram for additional information. All field wiring must comply with NEC (National Electrical Code) and local codes. Size wire based on MCA (Minimum Circuit Amps) on the unit informative plate on standard units. Leads are provided for field wire connections. Use UL (Underwriters' Laboratories) approved copper/aluminum connector.

When installing units, provide safety disconnect per NEC Article 440 or local codes. For non-fused disconnects, size the disconnect according to the sizing data provided in the electrical data tables. If a fused disconnect is used, determine the minimum size for the switch based on the disconnect sizing data provided in the electrical data tables and then coordinate the disconnect housing size to accommodate the Maximum Overcurrent Protection (MOCP) device size as marked on the unit informative plate. (See Table 3 and 4.)

See Fig. 16 for power wiring connection to unit leads and equipment ground.

Route power and ground lines through control box end panel or unit basepan (see Fig. 4 and 5) to connections as shown on unit wiring diagram and Fig. 16. Factory leads may be wired directly to the disconnect.

CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage.

The correct power phasing is critical to the operation of the scroll compressors. An incorrect phasing will result in compressor shutdown on thermal overload and possible damage to compressor. Should this occur, power phase correction must be made to the incoming power.

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Unit cabinet must have an uninterrupted, unbroken electrical ground to minimize the possibility of personal injury if an electrical fault should occur. This ground may consist of electrical wire connected to unit ground lug in control compartment, or conduit approved for electrical ground when installed in accordance with NEC; ANSI (American National Standards Institute)/NFPA (National Fire Protection Association), latest edition, and local electrical codes. Do not use gas piping as an electrical ground.

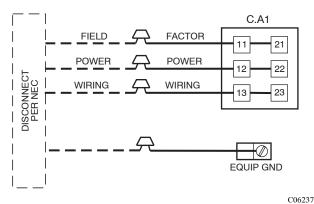


Fig. 16 - Field Power Wiring Connections

Field wiring must conform to temperature limitations for type "T" wire. All field wiring must comply with NEC and local requirements.

Operating voltage to compressor must be within voltage range indicated on unit nameplate. Voltages between phases must be balanced within 2%.

Unit failure as a result of operation on improper line voltage or excessive phase imbalance constitutes abuse and may cause damage to electrical components.

Field Control Wiring

Unit can be controlled with either a Carrier-approved accessory thermostat. Install thermostat according to the installation instructions included with accessory. Locate thermostat assembly on a solid interior wall in the conditioned space to sense average temperature.

Route thermostat cable or equivalent single leads of colored wire from subbase terminals through conduit into unit to low-voltage connections as shown on unit label wiring diagram and in Fig. 17.

NOTE: For wire runs up to 50 ft, use no. 18 AWG (American Wire Gauge) insulated wire (35° C minimum). For 50 to 75 ft, use no. 16 AWG insulated wire (35° C minimum). For over 75 ft, use no. 14 AWG insulated wire (35° C Minimum). All wire larger than no. 18 AWG cannot be directly connected at the thermostat and will require a junction box and splice at the thermostat.

Set heat anticipator settings as follows:

TB1

R

VOLTAGE	STAGE 1 (W1) ON	STAGE 1 AND 2 (W1 AND W2) ON
All	0.14	0.20

Settings may be changed slightly to provide a greater degree of comfort for a particular installation.

THERMOSTAT ASSEMBLY REMOVABLE JUMPER W1 W2 W1 W2 С Y1 Y2 G

Fig. 17 - Field Control Thermostat Wiring

Table 3 — Electrical Data — Units Without Optional Powered Convenience Outlet

UNIT	NOMINAL	VOLT RAN	AGE IGE		-	COMPR	ESSOF	}			OFM	IFM	COMBUSTION	PWR EXH	IFM	POWER	SUPPLY	DISCON	IECT SIZE
48PG	POWER SUPPLY VOLTS-PH-HZ	Min	Max	No RLA	. 1 LRA	No RLA	. 2 LRA	No RLA	. 3 LRA	Qty	FLA (ea)	FLÄ	FAN MOTOR FLA	FLA (ea)	TYPE	MCA	МОСР	FLA	LRA
				nLA	LNA	nLA	LNA	nLA	LNA	Giy	FLA (ea)	5.2		. ,	STD	38.6/38.6	50/50	40/40	212/212
	208/230-3-60	187	253	13.5	88	13.5	88	l _	_	2	1.5	7.5	0.52	_	ALT	40.9/40.9	50/50	43/43	238/238
	200/200 0 00	107	200	10.0	00	10.0	"			_	1.0	5.2 7.5	0.02	3.0	STD ALT	41.6/41.6 43.9/43.9	50/50 50/50	44/44 47/47	216/216 242/242
												2.6			STD	18.6	25	20	97
08	460-3-60	414	506	6.4	39	6.4	39	l _	_	2	0.8	3.4	0.30	_	ALT	19.4	25	20	110
00	400 0 00	717	500	0.4	0.5	0.4	05			_	0.0	2.6 3.4	0.00	1.2	STD	19.8 20.6	25 25	21 22	100 113
												2.0			STD	15.1	20	16	83
	575-3-60	518	633	5.1	34	5.1	34	l _	l _	2	0.8	2.8	0.24	_	ALT	15.9	20	17	94
	0.000		-	• • • • • • • • • • • • • • • • • • • •		•	•			_	0.0	2.0	5.2.	3.0	STD	18.1 18.9	20 25	19 20	87 98
												5.2			STD	44.2/44.2	60/60	46/46	218/218
	208/230-3-60	187	253	16.0	91	16.0	91	_	_	2	1.5	10.2	0.52	_	ALT	49.2/49.2	60/60	52/52	261/261
	200/200 0 00						•.			_		5.2 10.2	5.52	3.0	STD ALT	47.2/47.2 52.2/52.2	60/60 60/60	50/50 55/55	222/222 265/265
												2.6			STD	20.2	25	21	111
09	460-3-60	414	506	7.1	46	7.1	46	l _	l _	2	0.8	4.8	0.30	_	ALT	22.4	25	24	133
"			-							_	0.0	2.6 4.8	5.55	1.2	STD ALT	21.4 23.6	25 30	23 25	114 136
												2.0			STD	16.2	20	17	89
	575-3-60	518	633	5.6	37	5.6	37	_	_	2	0.8	2.8	0.24	_	ALT	17	20	18	100
	0.000		-	0.0		0.0	•			_	0.0	2.0	5.2.	3.0	STD	19.2 20	25 25	20	93 104
												7.5			STD	50.9/50.9	60/60	53/53	310/310
	208/230	187	253	17.6	123	17.6	123	_	_	2	1.9	10.2	0.52	_	ALT	53.6/53.6	60/60	57/57	327/327
	200,200						-==			_		7.5 10.2	5.52	3.0	STD	53.9/53.9 56.6/56.6	60/60 70/70	57/57 60/60	314/314 331/331
												3.4			STD	22.7	30	24	132
12	460	414	506	7.7	50	7.7	50	l _	_	2	1.0	4.8	0.30		ALT	24.1	30	26	141
	.55						"			_		3.4 4.8	5.55	1.2	STD	23.9 25.3	30 30	25 27	135 144
												2.8			STD	18.1	20	19	106
	575-3-60	518	633	6.1	40	6.1	40	l _	_	2	0.8	2.8	0.24		ALT	18.1	20	19	106
												2.8		3.0	STD	21.1 21.1	25 25	23 23	110 110
												10.2			STD	64.4/64.4	80/80	68/68	379/379
	208/230-3-60	187	253	22.4	149	22.4	149	l _	_	2	1.9	15.0 10.2	0.52		ALT STD	69.2/69.2	90/90	73/73	388/388
	,											15.0		3.0	ALT	67.4/67.4 72.2/72.2	80/80 90/90	71/71 77/77	383/383 392/392
												4.8			STD	30.7	40	32	191
14	460-3-60	414	506	10.6	75	10.6	75	_	_	2	1.0	7.4 4.8	0.30		ALT STD	33.3 31.9	40 40	35 34	195 194
												7.4		1.2	ALT	34.5	45	37	198
												2.8		_	STD	21.7	25	23	134
	575-3-60	518	633	7.7	54	7.7	54	_	_	2	0.8	5.6 2.8	0.24		ALT STD	24.5 24.7	30 30	26 26	148 138
												5.6		3.0	ALT	27.5	30	29	152
												10.2			STD	74.2/74.2	90/90	80/80	482/482
												15.0 19.4		_	ALT ALT	79.0/79.0 83.8/83.8	90/90 100/100	86/86 91/91	491/491 529/529
	208/230-3-60	187	253	18.1	137	18.1	137	17.6	123	3	1.9	10.2	0.52		STD	77.2/77.2	90/90	84/84	486/486
												15.0		3.0	ALT	82.0/82.0	100/100	89/89	495/495
												19.4 4.8			ALT STD	86.8/86.8 35.8	100/100 40	94/94 39	533/533 217
												7.4		_	ALT	38.4	45	42	221
16	460-3-60	414	506	9.0	62	9.0	62	7.7	50	3	1.0	9.7	0.30		ALT	40.8	50	44	240
10	700.0-00	717	000	3.0	32	3.0	32	'''	50		1.0	4.8 7.4	0.50	1.0	STD ALT	37 39.6	45 45	40 43	220 224
												9.7		1.2	ALT	42	50	46	243
												2.8			STD	26.6	30	29	168
												5.6 7.8		-	ALT ALT	29.4 31.9	35 35	32 34	182 197
	575-3-60	518	633	6.8	50	6.8	50	6.1	40	3	0.8	2.8	0.24		STD	29.6	35	32	172
												5.6		3.0	ALT	32.4	35	35	186
1			l	I	l	l	l	l	l	l		7.8			ALT	34.9	40	38	201

FLA Full Load Amps

HACR - Heating, Air Conditioning and Refrigeration

IFM Indoor (Evaporator) Fan MotorLocked Rotor Amps

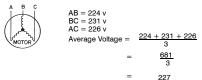
LRA MCA -Minimum Circuit Amps

MOCP - Maximum Overcurrent Protection

NEC - National Electrical Code

OFM - Outdoor-Fan Motor RLA Rated Load Amps

- In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker.


Unbalanced 3-Phase Supply Voltage
 Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percentage of voltage imbalance.

= 100 x % Voltage Imbalance

average voltage

max voltage deviation from average voltage

Example: Supply voltage is 230-3-60

Determine maximum deviation from average voltage. (AB) 227 - 223 = 3 v (BC) 231 - 227 = 4 v (AC) 227 - 226 = 1 v

Maximum deviation is 4 v. Determine percent of voltage imbalance.

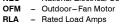
% Voltage Imbalance = 100 x 227 = 1.76%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%. IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

Table 4 — Electrical Data — Units With Optional Convenience Outlet

UNIT	NOMINAL		TAGE NGE		(COMPR	ESSOF	1			OFM	IFM	COMBUSTION	PWR EXH	IFM	POWER	SUPPLY	DISCON	NECT SIZE
48PG	POWER SUPPLY Volts-Ph-Hz	Min	Max	No RLA	. 1 LRA	No RLA	. 2 LRA	No RLA	. 3 LRA	Qty	FLA (ea)	FLÄ	FAN MOTOR FLA	FLA (ea)	TŸPE	MCA	МОСР	FLA	LRA
				NLA	LNA	NLA	LNA	NLA	LNA	Giy	T LA (ea)	5.2		(00)	STD	43.4/43.4	50/50	46/46	217/217
	200/220 2 60	187	252	10 5	00	13.5	88			2	1.5	7.5	0.50	_	ALT	45.7/45.7	50/50	49/49	243/243
	208/230-3-60	101	253	13.5	88	13.5	00	-	_	2	1.5	5.2	0.52	3.0	STD	46.4/46.4	50/50	49/49	221/221
												7.5 2.6		0.0	ALT STD	48.7/48.7 20.8	60/60 25	52/52 22	247/247 99
												3.4		_	ALT	21.6	25	23	112
08	460-3-60	414	506	6.4	39	6.4	39	-	-	2	0.8	2.6	0.30	10	STD	22	25	23	102
												3.4		1.2	ALT	22.8	25	24	115
												2.0		_	STD	16.8 17.6	20	18 19	85 96
	575-3-60	518	633	5.1	34	5.1	34	—	—	2	0.8	2.8	0.24		STD	19.8	25	21	89
												2.8		3.0	ALT	20.6	25	22	100
												5.2			STD	49.0/49.0	60/60	52/52	223/223
	208/230-3-60	187	253	16.0	91	16.0	91	_	_	2	1.5	10.2 5.2	0.52		ALT STD	54.0/54.0	60/60	58/58	266/266
	,											10.2		3.0	ALT	52.0/52.0 57.0/57.0	60/60 70/70	55/55 61/61	227/227 270/270
												2.6			STD	22.4	25	24	113
00	460 2 60	414	506	7.1	16	71	16			2	0.0	4.8	0.20	_	ALT	24.6	30	26	135
09	460-3-60	414	506	7.1	46	7.1	46	-	-	2	0.8	2.6	0.30	1.2	STD	23.6	30	25	116
												4.8 2.0		1	ALT STD	25.8 17.9	30 20	28 19	138 91
												2.8		_	ALT	18.7	25	20	102
	575-3-60	518	633	5.6	37	5.6	37	-	_	2	0.8	2.0	0.24	0.0	STD	20.9	25	22	95
												2.8		3.0	ALT	21.7	25	23	106
												7.5 10.2		_	STD	55.7/55.7 58.4/58.4	70/70 70/70	59/59 62/62	315/315 332/332
	208/230-3-60	187	253	17.6	123	17.6	123	—	—	2	1.9	7.5	0.52		STD	58.7/58.7	70/70	62/62	319/319
												10.2		3.0	ALT	61.4/61.4	70/70	66/66	336/336
												3.4			STD	24.9	30	26	134
12	460-3-60	414	506	7.7	50	7.7	50	_	_	2	1.0	4.8 3.4	0.30		ALT STD	26.3	30 30	28 28	143 137
												4.8		1.2	ALT	26.1 27.5	30	29	146
												2.8			STD	19.8	25	21	108
	575-3-60	518	633	6.1	40	6.1	40	l _	l _	2	0.8	2.8	0.24	_	ALT	19.8	25	21	108
	070000	010	000	0.1	10	0.1	40			-	0.0	2.8	0.24	3.0	STD	22.8 22.8	25 25	24 24	112 112
												10.2			STD	69.2/69.2	90/90	73/73	384/384
	000/000 0 00	407	050	00.4	440	00.4	440				4.0	15.0	0.50	_	ALT	74.0/74.0	90/90	79/79	393/393
	208/230-3-60	187	253	22.4	149	22.4	149	-	_	2	1.9	10.2	0.52	3.0	STD	72.2/72.2	90/90	77/77	388/388
										-		15.0 4.8		0.0	ALT STD	77.0/77.0 32.9	90/90 40	82/82 35	397/397 193
												7.4		_	ALT	35.5	45	38	197
14	460-3-60	414	506	10.6	75	10.6	75	-	-	2	1.0	4.8	0.30	4.0	STD	34.1	40	36	196
												7.4		1.2	ALT	36.7	45	39	200
												2.8 5.6		_	STD	23.4 26.2	30 30	25 28	136 150
	575-3-60	518	633	7.7	54	7.7	54	—	—	2	0.8	2.8	0.24		STD	26.4	30	28	140
												5.6		3.0	ALT	29.2	35	31	154
												10.2			STD	79.0/79.0	90/90	86/ 86	487/487
												15.0 19.4		_	ALT	83.8/83.8 88.6/88.6	100/100	91/ 91 96/ 96	496/496 534/534
	208/230-3-60	187	253	18.1	137	18.1	137	17.6	123	3	1.9	10.2	0.52		STD	82.0/82.0	100/100	89/ 89	491/491
												15.0		3.0	ALT	86.8/86.8	100/100	95/ 95	500/500
												19.4			ALT	91.6/91.6	100/100	100/100	538/538
												4.8			STD	38	45 45	41 44	219 223
												7.4 9.7		_	ALT ALT	40.6 43	50	44	242
16	460-3-60	414	506	9.0	62	9.0	62	7.7	50	3	1.0	4.8	0.30		STD	39.2	45	42	222
												7.4		1.2	ALT	41.8	50	45	226
												9.7			ALT	44.2	50	48	245
												2.8 5.6		_	STD	28.3 31.1	35 35	31 34	170 184
	575.0.00	-10							١.,	_		7.8		-	ALT	33.6	40	36	199
	575-3-60	518	633	6.8	50	6.8	50	6.1	40	3	0.8	2.8	0.24		STD	31.3	35	34	174
												5.6 7.8		3.0	ALT	34.1	40	37	188
	1	1	1	1	1	1	1	1	1	1	1	1 7 X			1 AII	366	1 40	1 40	1 203 1

FLA Full Load Amps

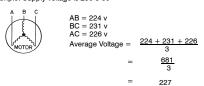

HACR - Heating, Air Conditioning and Refrigeration

IFM Indoor (Evaporator) Fan MotorLocked Rotor Amps

LRA MCA Minimum Circuit Amps

MOCP - Maximum Overcurrent Protection

NEC National Electrical Code


- In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker.

Unbalanced 3-Phase Supply Voltage
 Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percentage of voltage imbalance.

= 100 x % Voltage Imbalance average voltage

max voltage deviation from average voltage

7.8 Example: Supply voltage is 230-3-60

ALT

36.6

40

40

203

Determine maximum deviation from average voltage. (AB) 227 - 223 = 3 v (BC) 231 - 227 = 4 v (AC) 227 - 226 = 1 v

Maximum deviation is 4 v. Determine percent of voltage imbalance.

% Voltage Imbalance = 100 x 227 = 1.76%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%. IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

Step 10 —Optional EconoMi\$er IV

The optional EconoMi\$er IV comes from the factory fully wired. The outdoor air hoods must be installed. No field wiring is required for standard outdoor dry bulb changeover operation. Field-wiring of accessory sensors is required for different operational modes.

Install Outdoor-Air Hoods

Perform the following procedure to install the outdoor-air hoods:

- 1. Economizer and barometric relief hoods are stored in the condenser section under the slanted coil for shipping. (See Fig. 18 and 19.) Size 16 units also have two 1-in. cleanable filters and a baffle stored between the economizer hoods. Barometric relief/power exhaust hood is shipped inside of economizer hood. Remove screws that secure the wooden rails of the hood assemblies to the unit. Save screws. Slide complete assembly from condenser section. On size 16 units, remove the baffle and save screws.
- 2. Remove the screws that secure the economizer and barometric relief/power exhaust hoods to the wooden railing. Discard or recycle wooden rails. Save screws.
- 3. The barometric relief damper is secured to the economizer panel for shipping. Remove the screw holding the barometric relief damper to the economizer panel. Damper should be free to swing open during operation. (See Fig. 20 and 21.) On size 16 units, repeat for second
- 4. Hang the barometric relief/power exhaust hood on the mounting flange on the economizer panel. Secure hood to panel with screws saved from Step 2. See Fig. 20 - 22. On size 16 units, repeat for second hood.
- 5. Align hole in flange of economizer panel with left edge of hood. Hang economizer hood on the top flange of the economizer panel by rotating hood until top flange of the economizer hood engages the bent flange on the economizer panel. Rotate hood until hood is flush with the economizer panel. Hood will support itself from flange. Align holes in hood with holes in panel and secure hood to panel with screws saved from Step 2. (See Fig. 20, 21,
 - Size 16 Only Loosen screws securing the clip on top of the flange of each opening. Rotate clip 180° and tighten screw. Install 1-in. filter provided by inserting under the clip on the flange and letting filter drop behind bracket holding barometric relief hoods. Repeat for second hood.
- 6. On size 16 units, install baffle between the outdoor air hoods with the screws saved from Step 1. (See Fig. 21.)

EconomiSer IV Standard Sensors

Outdoor Air Temperature (OAT) Sensor

The outdoor air temperature sensor is a 10 to 20 mA device used to measure the outdoor-air temperature. The outdoor-air temperature is used to determine when the EconoMi\$er IV can be used for free cooling. The sensor is factory-installed on the EconoMi\$er IV in the outdoor airstream. The operating range of temperature measurement is 40° to 100° F.

Mixed-Air Temperature (MAT) Sensor

The mixed-air temperature sensor is a 3 K thermistor located at the discharge of the indoor fan. The sensor is mounted through the side plate of the blower. This sensor is factory installed. The operating range of temperature measurement is 0° to 158° F.

The temperature sensor looks like a probe with blue leads running to it. The sensor is sealed from moisture.

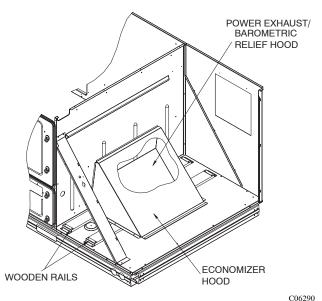


Fig. 18 - Economizer and Barometric Relief/Power Exhaust **Hoods Shipping Positions (48PG08-14)**

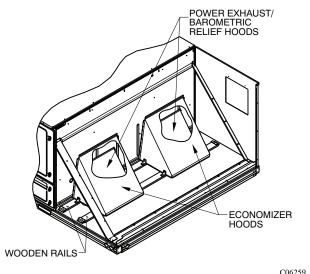


Fig. 19 - Economizer and Barometric Relief/Power Exhaust **Hoods Shipping Positions (48PG16)**

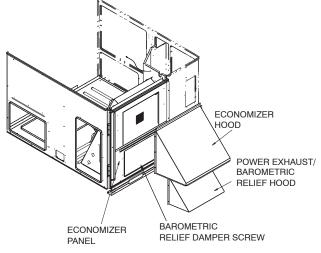


Fig. 20 - Hood Installation (48PG08-14)

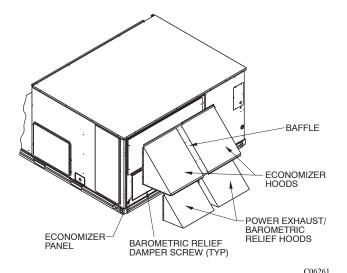


Fig. 21 - Hood Installation (48PG16)

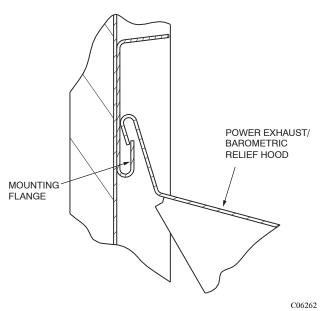


Fig. 22 - Barometric Relief/Power Exhaust Hood Flange

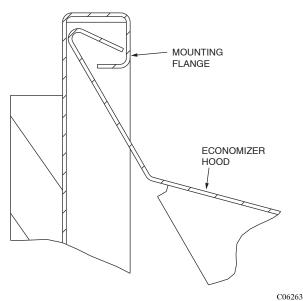


Fig. 23 - Economizer Flange

Outdoor Air Lockout Sensor

The EconoMi\$er IV is equipped with a temperature limit switch located in the outdoor airstream which is used to lock out the compressors below a 50° F ambient temperature.

Economi\$er IV Controller Wiring and Operational Mode

Determine the EconoMi\$er IV control mode before installing sensors and accessories. Different sensors are required for different control modes, and a number of accessories are available. Refer to Table 5. The EconoMi\$er IV is supplied from the factory with a mixed air temperature sensor and an outdoor air temperature sensor. This allows for operation of the EconoMi\$er IV with outdoor air dry bulb changeover control. Additional accessories can be added to allow for different types of changeover control and operation of the EconoMi\$er IV and unit. See Fig. 24 for wiring.

Outdoor Dry Bulb Changeover

The standard controller is shipped from the factory configured for outdoor dry bulb changeover control. The outdoor air and mixed air temperature sensors are included as standard. For this control mode, the outdoor temperature is compared to an adjustable set point selected on the control. If the outdoor-air temperature is above the set point, the EconoMi\$er IV will adjust the outside air dampers to minimum position. If the outdoor-air temperature is below the set point, the position of the outside air dampers will be controlled to provided free cooling using outdoor air. When in this mode, the LED next to the free cooling set point potentiometer will be on. The changeover temperature set point is controlled by the free cooling set point potentiometer located on the control. The scale on the potentiometer is A, B, C, and D. See Fig. 25 for the corresponding temperature changeover values.

Differential Dry Bulb Control

For differential dry bulb control the standard outdoor dry bulb sensor is used in conjunction with an additional accessory dry bulb sensor (part number CRTEMPSN002A00). The accessory sensor must be mounted in the return airstream. Connect the return air temperature sensor to the S_R terminal (after removing the 620-ohm resistor) and to the + terminal on the controller. (See Fig. 26.)

In this mode of operation, the outdoor-air temperature is compared to the return air temperature and the lower temperature airstream is used for cooling. When using this mode of changeover control, turn the enthalpy set point potentiometer fully clockwise to the D setting. (See Fig. 27.)

Outdoor Enthalpy Changeover

For enthalpy control, accessory enthalpy sensor (part number HH57AC078) is required. Replace the standard outdoor dry bulb temperature sensor with the accessory enthalpy sensor in the same mounting location. When the outdoor air enthalpy rises above the outdoor enthalpy changeover set point, the outdoor-air damper moves to its minimum position. The outdoor enthalpy changeover set point is set with the outdoor enthalpy set point potentiometer on the EconoMi\$er IV controller. The set points are A, B, C, and D. (See Fig. 28.) The factory-installed 620-ohm jumper must be in place across terminals S_R and + on the EconoMi\$er IV controller. (See Fig. 26.)

Differential Enthalpy Control

For differential enthalpy control, the EconoMi\$er IV controller uses two enthalpy sensors (CRENTDIF004A00), one in the outside air and one in the return air duct. The EconoMi\$er IV controller compares the outdoor air enthalpy to the return air enthalpy to determine EconoMi\$er IV use. The controller selects the lower enthalpy air (return or outdoor) for cooling. For example, when the outdoor air has a lower enthalpy than the return air, the EconoMi\$er IV opens to bring in outdoor air for free cooling.

Table 5 — EconoMi\$er IV Sensor Usage

APPLICATION	'		H OUTDOOR AIR SENSOR	ECONOMI\$ER IV WITH SINGLE ENTHALPY SENSOR				
	Acces	sories	Required	Accessories Required				
Outdoor Air Dry Bulb	None. The outdoor air of	dry bulk	sensor is factory installed.	CR ⁻	EMPSN	1002A00*		
Differential Dry Bulb	CRTE	MPSN	002A00*	(2) Cl	RTEMPS	SN002A00*		
Single Enthalpy	ŀ	HH57AC	078	None. The single er	thalpy s	sensor is factory installed.		
Differential Enthalpy		HH57AC and NTDIF		CRENTDIF004A00*				
CO ₂ for DCV Control using a Wall-Mounted CO ₂ Sensor	33	BZCSE	VCO2	33ZCSENCO2				
CO ₂ for DCV Control using a Duct-Mounted CO ₂ Sensor	33ZCSENCO2† and 33ZCASPCO2**	OR	CRCBDIOX005A00††	33ZCSENCO2† and 33ZCASPCO2**	OR	CRCBDIOX005A00††		

^{*} CRENTDIF004A00 and CRTEMPSN002A00 accessories are used on many different base units. As such, these kits may contain parts that will not be needed for installation.

- † 33ZCSENCO2 is an accessory CO2 sensor.
- * 33ZCASPCO2 is an accessory aspirator box required for duct-mounted applications.
- †† CRCBDIOX005A00 is an accessory that contains both 33ZCSENCO2 and 33ZCASPCO2 accessories.

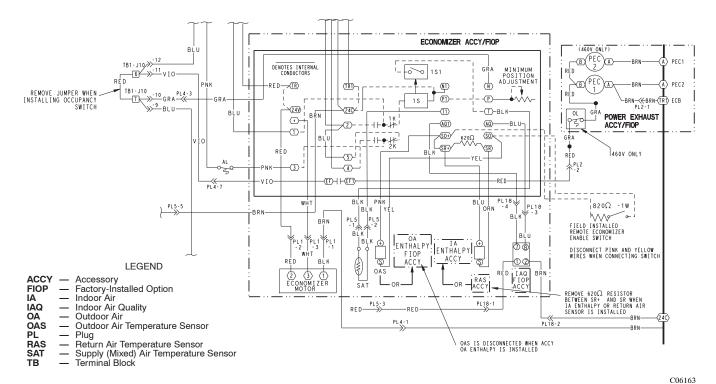


Fig. 24 - EconoMi\$er IV Wiring

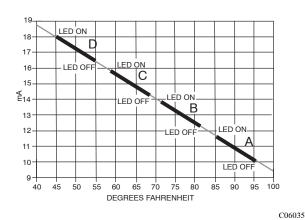


Fig. 25 - Temperature Changeover Set Points

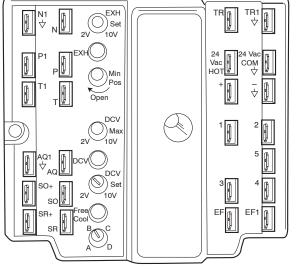


Fig. 26 - Economi\$er IV Control

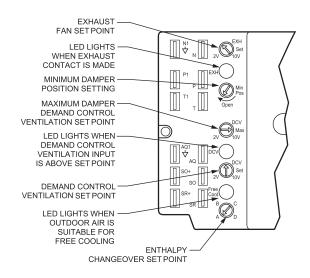


Fig. 27 - Economi\$er IV Controller Potentiometer and LED Locations

100 105 (35) (38) (32)(41) (43)CONTROL CURVE CONTROL POINT APPROX. deg. F (deg. C) AT 50% RH 80 73 (23) 70 (21) В С 67 (19) D 63 (17) P.E. HIGH LIMIT **CURVE** (10) (13) (16) (18) (21) (24) (27) (29) (32) (35) (38) (41) (43) APPROXIMATE DRY BULB TEMPERATURE--degrees F (degrees C)

Fig. 28 - Enthalpy Changeover Set Points

Replace the standard outside air dry bulb temperature sensor with the accessory enthalpy sensor in the same mounting location. Mount the return air enthalpy sensor in the return air duct. The return air enthalpy sensor is wired to terminals S_R and + on the EconoMi\$er IV controller. (See Fig. 26.) The outdoor enthalpy changeover set point is set with the outdoor enthalpy set point potentiometer on the EconoMi\$er IV controller. When using this mode of changeover control, turn the enthalpy set point potentiometer fully clockwise to the D setting.

Indoor Air Quality (IAQ) Sensor Input

The IAQ input can be used for demand control ventilation control based on the level of ${\rm CO}_2$ measured in the space or return air duct

Mount the optional IAQ sensor according to manufacturer specifications. The IAQ sensor should be wired to the AQ and AQ1 terminals of the controller. Adjust the DCV (demand controlled ventilation) potentiometers to correspond to the DCV

C06034

voltage output of the indoor air quality sensor at the user-determined set point. (See Fig. 29.)

If a separate field-supplied transformer is used to power the IAQ sensor, the sensor must not be grounded or the EconoMi\$er IV control board will be damaged. (See Fig. 24.)

Power Exhaust

The factory-installed power exhaust will be factory wired and installed. If an accessory power exhaust is to be installed, see the accessory power exhaust installation instructions included with the power exhaust for installation and wiring. The wiring plug on the power exhaust is connected to wiring harness plug PL1-3,4.

Exhaust Set Point Adjustment

The exhaust set point will determine when the exhaust fan runs based on damper position (if accessory power exhaust is installed). The set point is modified with the Exhaust Fan Set Point (EXH SET) potentiometer. The set point represents the damper position above which the exhaust fans will be turned on. When there is a call for exhaust, the EconoMi\$er IV controller provides a 45 ± 15 second delay before exhaust fan activation to allow the dampers to open. This delay allows the damper to reach the appropriate position to avoid unnecessary fan overload.

Minimum Position Control

There is a minimum damper position potentiometer on the EconoMi\$er IV controller. (See Fig. 27.) The minimum damper position maintains the minimum airflow into the building during the occupied period.

When using demand ventilation, the minimum damper position represents the minimum ventilation position for VOC (volatile organic compounds) ventilation requirements. The maximum demand ventilation position is used for fully occupied ventilation.

When demand ventilation control is not being used, the minimum position potentiometer should be used to set the occupied ventilation position. The maximum demand ventilation position should be turned fully clockwise.

Adjust the minimum position potentiometer to allow the minimum amount of outdoor air, as required by local codes, to enter the building. Make minimum position adjustments with at least 10°F temperature difference between the outdoor and return-air temperatures.

To determine the minimum position setting, perform the following procedure:

1. Calculate the appropriate mixed-air temperature using the following formula:

 $(T_O \times OA) + (T_R \times RA) = T_M$

 T_O = Outdoor-Air Temperature

OA = Percent of Outdoor Air

 T_R = Return-Air Temperature

RA = Percent of Return Air

 $T_M = Mixed-Air Temperature$

As an example, if local codes require 10% outdoor air during occupied conditions, outdoor-air temperature is 60° F, and return-air temperature is 75° F.

$(60 \times .10) + (75 \times .90) = 73.5 \text{ F}$

- 2. Disconnect the mixed-air sensor from terminals T and T1.
- 3. Ensure that the factory-installed jumper is in place across terminals P and P1. If remote damper positioning is being used, make sure that the terminals are wired according to Fig. 24 and that the minimum position potentiometer is turned fully clockwise.
- 4. Connect 24 vac across terminals TR and TR1.
- Carefully adjust the minimum position potentiometer until the measured mixed-air temperature matches the calculated value.
- 6. Reconnect the mixed-air sensor to terminals T and T1.

Remote control of the EconoMi\$er IV damper is desirable when requiring additional temporary ventilation. If a field-supplied remote potentiometer (Honeywell part number S963B1128) is wired to the EconoMi\$er IV controller, the minimum position of the damper can be controlled from a remote location.

To control the minimum damper position remotely, remove the factory-installed jumper on the P and P1 terminals on the EconoMi\$er IV controller. Wire the field-supplied potentiometer to the P and P1 terminals on the EconoMi\$er IV controller. (See Fig. 26.)

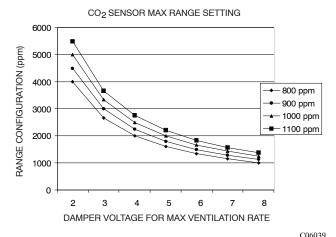


Fig. 29 - CO₂ Sensor Maximum Range Setting

Damper Movement

When the EconoMi\$er IV board receives initial power, it can take the damper up to $2^1/_2$ minutes before it begins to position itself. After the initial positioning, subsequent changes to damper position will take up to 30 seconds to initiate. Damper movement from full open to full closed (or vice versa) takes $2^1/_2$ minutes.

Thermostats

The EconoMi\$er IV control works with conventional thermostats that have a Y1 (cool stage 1), Y2 (cool stage 2), W1 (heat stage 1), W2 (heat stage 2), and G (fan). The EconoMi\$er IV control does not support space temperature sensors. Connections are made at the thermostat terminal connection board located in the main control box.

<u>Pressure Drop</u>

See Fig. 30-32 for EconoMi\$er IV pressure drop. Evaporator fan may need to be adjusted.

Demand Control Ventilation (DCV)

When using the EconoMi\$er IV for demand control ventilation, there are some equipment selection criteria which should be considered. When selecting the heat capacity and cool capacity of the equipment, the maximum ventilation rate must be evaluated for design conditions. The maximum damper position must be calculated to provide the desired fresh air.

Typically the maximum ventilation rate will be about 5 to 10% more than the typical cfm required per person, using normal outside air design criteria.

A proportional anticipatory strategy should be taken with the following conditions: a zone with a large area, varied occupancy, and equipment that cannot exceed the required ventilation rate at design conditions. Exceeding the required ventilation rate means the equipment can condition air at a maximum ventilation rate that is greater than the required ventilation rate for maximum occupancy. A proportional-anticipatory strategy will cause the fresh air supplied to increase as the room $\rm CO_2$ level increases even though the $\rm CO_2$ set point has not been reached. By the time the $\rm CO_2$ level reaches the set point, the damper will be at maximum ventilation and should maintain the set point.

In order to have the CO_2 sensor control the economizer damper in this manner, first determine the damper voltage output for minimum or base ventilation. Base ventilation is the ventilation required to remove contaminants during unoccupied periods. The following equation may be used to determine the percent of outside air entering the building for a given damper position. For best results there should be at least a 10° difference in outside and return-air temperatures.

 $(T_O \times OA) + (T_R \times RA) = T_M$

T_O = Outdoor-Air Temperature

OA = Percent of Outdoor Air

 T_R = Return-Air Temperature

RA = Percent of Return Air

 $T_M = Mixed-Air Temperature$

Once base ventilation has been determined, set the minimum damper position potentiometer to the correct position.

The same equation can be used to determine the occupied or maximum ventilation rate to the building. For example, an output of 3.6 volts to the actuator provides a base ventilation rate of 5% and an output of 6.7 volts provides the maximum ventilation rate of 20% (or base plus 15 cfm per person). Use Fig. 29 to determine the maximum setting of the CO₂ sensor. For example, a 1100 ppm set point relates to a 15 cfm per person design. Use the 1100 ppm curve on Fig. 29 to find the point when the CO₂ sensor output will be 6.7 volts. Line up the point on the graph with the left side of the chart to determine that the range configuration for the CO₂ sensor should be 1800 ppm. The EconoMi\$er IV controller will output the 6.7 volts from the CO₂ sensor to the actuator when the CO₂ concentration in the space is at 1100 ppm. The DCV set point may be left at 2 volts since the CO₂ sensor voltage will be ignored by the EconoMi\$er IV controller until it rises above the 3.6 volt setting of the minimum position potentiometer.

Once the fully occupied damper position has been determined, set the maximum damper demand control ventilation potentiometer to this position. Do not set to the maximum position as this can result in over-ventilation to the space and potential high humidity

CO₂ Sensor Configuration

The CO₂ sensor has preset standard voltage settings that can be selected anytime after the sensor is powered up. (See Table 6.)

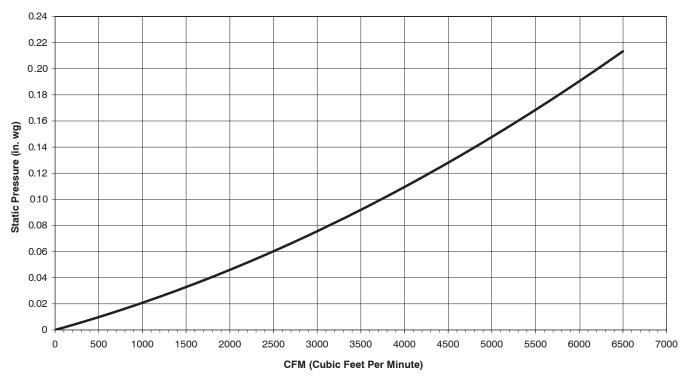
Use setting 1 or 2 for Carrier equipment.

- 1. Press Clear and Mode buttons. Hold at least 5 seconds until the sensor enters the Edit mode.
- 2. Press Mode twice. The STDSET Menu will appear.
- 3. Use the Up/Down button to select the preset number. See Table 6.
- 4. Press Enter to lock in the selection.
- 5. Press Mode to exit and resume normal operation.

The custom settings of the CO₂ sensor can be changed anytime after the sensor is energized. Follow the steps below to change the non-standard settings:

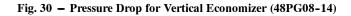
- 1. Press Clear and Mode buttons. Hold at least 5 seconds until the sensor enters the Edit mode.
- 2. Press Mode twice. The STDSET Menu will appear.
- Use the Up/Down button to toggle to the NONSTD menu and press Enter.
- Use the Up/Down button to toggle through each of the nine variables, starting with Altitude, until the desired setting is reached.
- 5. Press Mode to move through the variables.
- 6. Press Enter to lock in the selection, then press Mode to continue to the next variable.

Dehumidification of Fresh Air with DCV Control


Information from ASHRAE (American Society of Heating, Refrigeration, and Air Conditioning Engineers) indicates that the largest humidity load on any zone is the fresh air introduced. For some applications, a device such as a 62AQ energy recovery unit is added to reduce the moisture content of the fresh air being brought into the building when the enthalpy is high. In most cases, the normal heating and cooling processes are more than adequate to remove the humidity loads for most commercial applications.

This makes the control of the of the dehumidification device simple when using the enthalpy or differential enthalpy sensor. The enthalpy sensor or differential enthalpy sensor is installed on the equipment to determine economizer operation. The high enthalpy signal from the enthalpy sensor or differential enthalpy sensor can be used to turn on the outdoor air moisture removal device any time fresh air is required for the space.

The energy recovery device should be sized for maximum latent and sensible conditioning at maximum ventilation on a design day. A calculation for leaving-air temperature on a low ambient, low ventilation day should also be done to determine the mixed-air temperature of the return and pre-conditioned outside air. The design should produce an air temperature somewhat near room conditions to prevent reheat of the air mixture. The energy recovery device should be interlocked with the heat to turn off the device when in the heat mode.


Step 11 —Install All Accessories

After all of the factory-installed options have been adjusted, install all field-installed accessories. Refer to the accessory installation instructions included with each accessory. Consult the Carrier Price Pages or RTU (rooftop unit) Builder software for accessory package numbers for particular applications. For applications with high outdoor air requirements it is recommended that the outdoor filter accessory be used to eliminate water entrainment during rainfall.

NOTE: Economizer damper pressure drop is with outdoor air damper totally closed and return air damper fully open.

C06177

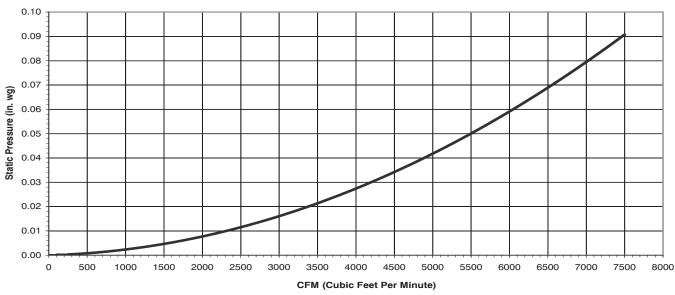


Fig. 31 - Pressure Drop for Vertical Economizer (48PG16)

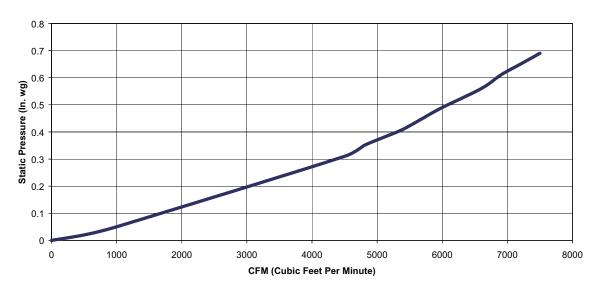
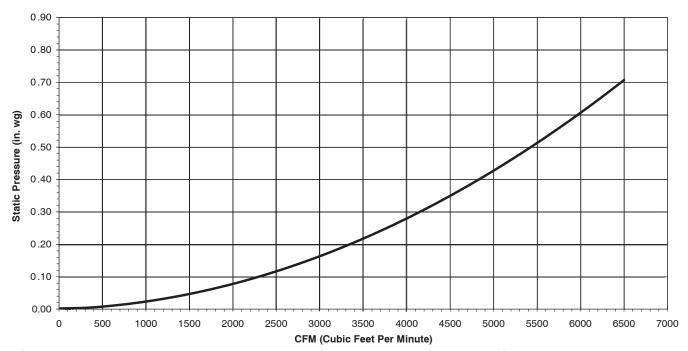



Fig. 32 - Pressure Drop for Horizontal Economizer (48PG16)

C06181

 $NOTE: Economizer\ damper\ pressure\ drop\ is\ with\ outdoor\ air\ damper\ totally\ closed\ and\ return\ air\ damper\ fully\ open.$

Fig. 33 - Pressure Drop for Horizontal Economizer (48PG08-14)

Table 6 — CO₂ Sensor Standard Settings

SETTING	EQUIPMENT	ОИТРИТ	VENTILATION RATE (cfm/Person)	ANALOG OUTPUT	CO ₂ CONTROL RANGE (ppm)	OPTIONAL RELAY SET- POINT (ppm)	RELAY HYSTERESIS (ppm)
1	Interface With Standard	Proportional	Any	0-10V 4-20 mA	0-2000	1000	50
2	Building Control System	Proportional	Any	2-10V 7-20 mA	0-2000	1000	50
3	System	Exponential	Any	0-10V 4-20 mA	0-2000	1100	50
4		Proportional	15	0-10V 4-20 mA	0-1100	1100	50
5	Economizer	Proportional	20	0-10V 4-20 mA	0- 900	900	50
6	Economizer	Exponential	15	0-10V 4-20 mA	0-1100	1100	50
7		Exponential	20	0-10V 4-20 mA	0- 900	900	50
8	Health and Safety	Proportional	_	0-10V 4-20 mA	0-9999	5000	500
9	Parking/Air Intakes/ Loading Docks	Proportional	<u> </u>	0-10V 4-20 mA	0-2000	700	50

PRE-START-UP

A WARNING

PERSONAL INJURY HAZARD

Failure to follow this warning could result in personal injury.

Follow recognized safety practices and wear protective goggles when checking or the servicing refrigerant system.

Do not operate the compressor or provide any electric power to the unit unless the compressor terminal cover is in place and secured.

Do not remove the compressor terminal cover until all electrical sources are disconnected.

Relieve all pressure from the system before touching or disturbing anything inside the compressor terminal box if refrigerant leak is suspected around the compressor terminals.

Never attempt to repair a soldered connection while the refrigerant system is under pressure.

Do not use torch to remove any component. The system contains oil and refrigerant under pressure. To remove a component, wear protective goggles and proceed as follows:

Shut off gas and then electrical power to the unit. Install lockout tag.

Relieve all pressure from the system using both high-pressure and low-pressure ports.

Cut the component connection tubing with a tubing cutter, and remove the component from the unit.

Carefully unsweat the remaining tubing stubs when necessary. Oil can ignite when exposed to torch flame.

Proceed as follows to inspect and prepare the unit for initial start-up:

- 1. Remove all access panels.
- Read and follow instructions on all WARNING, CAUTION, and INFORMATION labels attached to, or shipped with, the unit.
- 3. Make the following inspections:
 - a. Inspect for shipping and handling damages such as broken lines, loose parts, or disconnected wires, etc.

- Inspect for oil at all refrigerant tubing connections and on unit base. Detecting oil generally indicates a refrigerant leak. Leak-test all refrigerant tubing connections using an electronic leak detector, halide torch, or liquid-soap solution.
- c. Inspect all field-wiring and factory-wiring connections. Be sure that connections are completed and tight.
- d. Inspect coil fins. If damaged during shipping and handling, carefully straighten the fins with a fin comb.
- 4. Verify the following conditions:
 - a. Make sure that condenser fan blade is correctly positioned in the fan orifice. See Condenser-Fan Adjustment section for more details.
 - b. Make sure that air filter(s) is in place.
 - Make sure that condensate drain trap is filled with water to ensure proper drainage.
 - d. Make sure that all tools and miscellaneous loose parts have been removed.

START-UP

Unit Preparation

Make sure that unit has been installed in accordance with installation instructions and applicable codes. Complete the Start-Up Checklist, located on the back page of this booklet.

Return-Air Filters

Make sure correct filters are installed in filter tracks (see Tables 1 and 2). Do not operate unit without return-air filters.

Outdoor-Air Inlet Screens

Outdoor-air inlet screen(s) must be in place before operating unit.

Compressor Mounting

Compressors are internally spring mounted. Do not loosen or remove compressor hold-down bolts.

Internal Wiring

Check all electrical connections in unit control boxes. Tighten as required.

Gas Piping

Check gas piping for leaks.

A WARNING

FIRE, EXPLOSION HAZARD

Failure to follow this warning could result in personal injury, death and/or property damage.

Disconnect gas piping from unit when leak testing at pressure greater than $^{1}/_{2}$ psig. Pressures greater than $^{1}/_{2}$ psig will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than $^{1}/_{2}$ psig, it *must* be replaced before use. When pressure testing field- supplied gas piping at pressures of $^{1}/_{2}$ psig or less, a unit connected to such piping must be isolated by manually closing the gas valve.

Refrigerant Service Ports

Each independent refrigerant system has a total of 4 Schrader-type service gauge ports per circuit. One port is located on the suction line, one on the compressor discharge line, and 2 on the liquid line on both sides of the filter drier. Be sure that caps on the ports are tight.

Crankcase Heater

Crankcase heaters are energized if compressor B1 is not operating.

High Flow Refrigerant Valves

Three high flow refrigerant valves are located on the compressor hot gas tube, suction tube, and the liquid line leaving the condenser. Large black plastic caps distinguish these valves with O-rings located inside the caps. These valves cannot be accessed for service in the field. Ensure that the plastic caps are in place and tight or the possibility of refrigerant leakage could occur.

Compressor Rotation

It is important to be certain that the compressors are rotating in the proper direction. To determine whether or not compressors are rotating in the proper direction:

- 1. Connect service gauges to the suction and discharge pressure fittings.
- 2. Energize the compressor.
- 3. The suction pressure should drop and the discharge pressure should rise, as is normal on any start-up.

If the suction pressure does not drop and the discharge pressure does not rise to normal levels:

- 1. Note that the evaporator fan is probably also rotating in the wrong direction.
- 2. Turn off power to the unit and install lockout tag.
- 3. Reverse any two of the unit power leads.
- 4. Reapply power to the compressor.

The suction and discharge pressure levels should now move to their normal start-up levels.

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage.

When the compressors are rotating in the wrong direction, the unit will have increased noise levels and will not provide heating and cooling. Compressor failure will occur if the unit continues to operate in this condition.

Evaporator Fan

Fan belt and variable pitch pulleys are factory-installed. See Tables 7-36 for fan performance data. Be sure that fans rotate in the proper direction. See Table 37 for air quantity limits. See Table 38 for evaporator fan motor specifications. See Table 39 for fan rpm at various motor pulley settings. To alter fan performance, see Evaporator Fan Performance Adjustment section.

Cooling

To start unit, turn on main power supply. Set system selector switch at COOL position and fan switch at AUTO. position. Adjust thermostat to a setting below room temperature. Compressor starts on closure of contactors.

Check unit charge. Refer to Refrigerant Charge section.

Reset thermostat at a position above room temperature. Compressor will shut off. Evaporator fan will shut off after 30-second delay.

TO SHUT OFF UNIT — Set system switch at OFF position. Resetting thermostat at a position above room temperature shuts unit off temporarily until space temperature exceeds thermostat setting. Units are equipped with Cycle-LOC™ protection device. Unit shuts down on any safety trip and remains off; an indicator light on the thermostat comes on. Check reason for safety trip.

Compressor restart is accomplished by manual reset at the thermostat by turning the selector switch to OFF position and then to ON position.

Main Burners

Main burners are factory set and should require no adjustment.

To check ignition of main burners and heating controls, move thermostat set point above room temperature and verify that the burners light and evaporator fan is energized. After ensuring that the unit continues to heat the building, lower the thermostat setting below room temperature and verify that the burners and evaporator fan turn off.

NOTE: Upon a call for heat the main burners will remain on for a minimum of 60 seconds.

Heating

- Purge gas supply line of air by opening union ahead of gas valve. When gas odor is detected, tighten union and wait 5 minutes before proceeding.
- 2. Turn on electrical supply and open manual gas valve.
- Set system switch selector at HEAT position and fan switch at AUTO. or ON position. Set heating temperature lever above room temperature.
- 4. The induced-draft motor will start.
- 5. After a call for heating, the main burners should light within 5 seconds. If the burners do not light, then there is a 22-second delay before another 5-second try. If the burners still do not light, the time delay is repeated. If the burners do not light within 15 minutes, there is a lockout. To reset the control, break the 24 v power to W1.
- The evaporator fan will turn on 45 seconds after a call for heating.
- 7. The evaporator fan will turn off 45 seconds after the thermostat temperature is satisfied.
- 8. Adjust airflow to obtain a temperature rise within the range specified on the unit nameplate and Tables 1 and 2.

NOTE: The default value for the evaporator-fan motor on/off delay is 45 seconds. The Integrated Gas Unit Controller (IGC) modifies this value when abnormal limit switch cycles occur. Based upon unit operating conditions, the on delay can be reduced to 0 seconds and the off delay can be extended to 180 seconds. When one flash of the LED is observed, the evaporator-fan on/off delay has been modified.

If the limit switch trips at the start of the heating cycle during the evaporator on delay, the time period of the on delay for the next cycle will be 5 seconds less than the time at which the switch tripped. (Example: If the limit switch trips at 30 seconds, the evaporator-fan on delay for the next cycle will occur at 25 seconds.) To prevent short-cycling, a 5-second reduction will only occur if a minimum of 10 minutes has elapsed since the last call for heating.

The evaporator-fan off delay can also be modified. Once the call for heating has ended, there is a 10-minute period during which the modification can occur. If the limit switch trips during this period, the evaporator-fan off delay will increase by 15 seconds. A maximum of 9 trips can occur, extending the evaporator-fan off delay to 180 seconds.

To restore the original default value, reset the power to the unit.

TO SHUT OFF UNIT — Set system selector switch at OFF position. Resetting heating selector lever below room temperature will temporarily shut off unit until space temperature falls below thermostat setting.

Safety Relief

A soft-solder joint at the suction-line Schrader port provides pressure relief under abnormal temperature and pressure conditions.

Ventilation (Continuous Fan)

Set fan and system selector switches at ON and OFF positions, respectively. Evaporator fan operates continuously to provide constant air circulation. When the evaporator fan selector switch is turned to the OFF position, there is a 30-second delay before the fan turns off.

Operating Sequence

Cooling, Units Without Economizer

When thermostat calls for cooling, terminals G and Y1 are energized. The indoor-fan contactor (IFC) and compressor contactor (CA.1) are energized and indoor-fan motor, compressor, and outdoor fan starts. The outdoor-fan motor runs continuously while unit is cooling.

If the thermostat is satisfied, Y1 and G deenergize. The compressor stops immediately and the indoor fan will continue to operate for 30 seconds.

If the thermostat calls for a second stage of cooling by energizing Y2, compressor contactor no. 2 (CB.1) is energized and compressor no. 2 starts. When the thermostat is satisfied, Y2 deenergizes, stopping compressor no. 2.

Size 16 units have 3 compressors and 2 stages of cooling. Compressors 1 and 2 are controlled by Y1 and compressor no. 3 is controlled by Y2.

Heating, Units Without Economizer

When the thermostat calls for heating, terminal W1 is energized. To prevent thermostat short-cycling, the unit is locked into the Heating mode for at least 1 minute when W1 is energized. The induced-draft motor is energized and the burner ignition sequence begins. The indoor (evaporator) fan motor (IFM) is energized 45 seconds after a flame is ignited. On units equipped for two stages of heat, when additional heat is needed, W2 (if equipped) is energized and the high-fire solenoid on the main gas valve (MGV) is energized. When the thermostat is satisfied and W1 is deenergized, the IFM stops after a 45-second time-off delay.

Cooling, Units with Economi\$er IV

When free cooling is not available, the compressors will be controlled by the zone thermostat. When free cooling is available, the outdoor-air damper is modulated by the EconoMi\$er IV control to provide a 50° to 55°F mixed-air temperature into the zone. As the mixed-air temperature fluctuates above 55° or below 50°F, the dampers will be modulated (open or close) to bring the mixed-air temperature back within control.

If the load is high and Y2 is energized, then the first stage of mechanical cooling will be used to supplement the free cooling provided by the economizer. If mechanical cooling is utilized with free cooling, the outdoor-air damper will maintain its current position at the time the compressor is started. If the increase in cooling capacity causes the mixed-air temperature to drop below 45°F, then the outdoor-air damper position will be decreased to the minimum position. If the mixed-air temperature continues to fall, the outdoor-air damper will close. Control returns to normal once the mixed-air temperature rises above 48°F.

If optional power exhaust is installed, as the outdoor-air damper opens and closes, the power exhaust fans will be energized and deenergized if the position goes above or below the power exhaust set point. When the exhaust fan is required to be on, the LED on the control will be energized.

If field-installed accessory CO_2 sensors are connected to the EconoMi\$er IV control, a demand controlled ventilation strategy will begin to operate. As the CO_2 level in the zone increases above the CO_2 set point, the minimum position of the damper will be increased proportionally from the minimum damper position to the maximum demand ventilation damper position. As the CO_2 level decreases because of the increase in fresh air, the outdoor-air damper will be proportionally closed.

If there is no G signal then the control will drive the damper to the fully closed position.

The control is also equipped with an occupied/unoccupied input. If the input is closed, then the damper will be driven to the minimum position when G is energized. If the input is open then the damper will remain in the fully closed position unless there is a demand for free cooling of DCV ventilation.

On the initial power to the EconoMi\$er IV control, it will take the damper up to $2^1/_2$ minutes before it begins to position itself. Any change in damper position will take up to 30 seconds to initiate. Damper movement from full closed to full open (or vice versa) will take between $1^1/_2$ to $2^1/_2$ minutes.

If free cooling can be used as determined from the appropriate changeover command (switch, dry bulb, enthalpy curve, differential dry bulb, or differential enthalpy), then the control will modulate the dampers open to maintain the mixed air temperature set point at 50° to 55° F.

If there is a further demand for cooling (cooling second stage — Y2 is energized), then the control will bring on compressor stage 1 to maintain the mixed air temperature set point. The EconoMi\$er IV damper will be open at maximum position. EconoMi\$er IV operation is limited to a single compressor.

Heating, Units With Economi\$er IV

When the room temperature calls for heat, the heating controls are energized as described in the Heating, Units Without Economizer section. The IFM is energized and the EconoMi\$er IV damper modulates to the minimum position. When the thermostat is satisfied, the damper modulates closed.

Table 7 — Fan Performance — 48PGD08 Vertical Units

Ainflow				Availal	ole External St	atic Pressure	(in. wg)			
Airflow (Cfm)	0	.2	0).4	0	.6	0	.8	1	.0
(OIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	464	0.35	541	0.46	612	0.58	677	0.70	739	0.83
2400	479	0.40	554	0.52	622	0.64	686	0.77	745	0.90
2550	496	0.46	568	0.58	633	0.71	695	0.84	753	0.98
2700	512	0.53	582	0.65	646	0.79	705	0.92	762	1.07
2850	530	0.60	597	0.73	658	0.87	716	1.01	771	1.16
3000	547	0.68	612	0.82	672	0.96	728	1.11	782	1.26
3150	565	0.77	628	0.91	686	1.06	741	1.21	793	1.37
3300	583	0.86	644	1.01	701	1.17	754	1.32	805	1.49
3450	602	0.97	661	1.12	716	1.28	768	1.44	817	1.61
3600	621	1.08	678	1.24	732	1.41	782	1.57	831	1.75
3750	640	1.20	696	1.37	748	1.54	797	1.71	844	1.89

Airflow (Cfm)				Availal	ole External S	tatic Pressure	(in. wg)			
	1	.2	1	.4	1	.6	1	.8		2.0
	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	797	0.96	852	1.10	905	1.25	955	1.40	1003	1.55
2400	802	1.04	856	1.19	908	1.34	957	1.49	1005	1.65
2550	808	1.13	861	1.28	912	1.43	960	1.59	1007	1.75
2700	816	1.22	867	1.37	917	1.53	965	1.70	1011	1.86
2850	824	1.31	874	1.47	923	1.64	970	1.81	1015	1.98
3000	833	1.42	882	1.58	930	1.75	976	1.93	1020	2.11
3150	843	1.53	891	1.70	937	1.88	982	2.05	1026	2.24
3300	854	1.66	900	1.83	946	2.01	990	2.19	1033	2.38
3450	865	1.79	911	1.97	955	2.15	998	2.34	1040	2.53
3600	877	1.93	922	2.11	965	2.30	1007	2.49	1048	2.69
3750	889	2.08	933	2.26	976	2.46	1017	2.65	1057	2.86

Bhp — Brake Horsepower

High Range Motor/Drive Required

NOTES:

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 2.40 for low range motor/drive and 3.10 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 8 — Fan Performance — 48PGE08 Vertical Units

A :				Availal	ole External St	atic Pressure	(in. wg)			
Airflow (Cfm)	0	.2	0	.4	0	.6	0	.8	1.	.0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	463	0.35	541	0.46	611	0.58	677	0.70	738	0.8
2400	481	0.41	556	0.52	623	0.64	687	0.77	747	0.9
2550	499	0.47	571	0.59	637	0.72	698	0.85	756	0.99
2700	518	0.54	587	0.66	650	0.80	710	0.93	766	1.0
2850	537	0.62	603	0.75	665	0.88	722	1.03	777	1.1
3000	556	0.70	620	0.84	680	0.98	735	1.13	789	1.2
3150	575	0.79	637	0.93	695	1.08	749	1.24	801	1.4
3300	595	0.89	655	1.04	711	1.19	764	1.35	814	1.5
3450	615	1.00	673	1.16	727	1.32	778	1.48	828	1.6
3600	635	1.12	691	1.28	744	1.44	794	1.62	842	1.7
3750	655	1.24	710	1.41	761	1.58	810	1.76	856	1.94

				Availal	ble External S	tatic Pressure	(in. wg)			
Airflow	1	.2	1	.4	1	.6	1	.8	2	2.0
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	797	0.96	852	1.10	904	1.25	954	1.40	1002	1.55
2400	803	1.04	857	1.19	909	1.34	958	1.49	1006	1.65
2550	811	1.13	864	1.28	914	1.44	963	1.60	1009	1.76
2700	820	1.23	871	1.38	921	1.54	968	1.71	1014	1.88
2850	829	1.33	879	1.49	928	1.66	974	1.83	1019	2.00
3000	840	1.44	888	1.61	936	1.78	981	1.95	1026	2.13
3150	851	1.56	898	1.73	944	1.90	989	2.08	1033	2.27
3300	862	1.69	909	1.86	954	2.04	998	2.23	1040	2.41
3450	875	1.82	920	2.00	964	2.19	1007	2.38	1049	2.57
3600	888	1.97	932	2.15	975	2.34	1017	2.54	1058	2.73
3750	901	2.12	944	2.31	987	2.51	1028	2.71	1068	2.91

LEGEND

Bhp — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 2.40 for low range motor/drive and 3.10 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 9 — Fan Performance — 48PGF08 Vertical Units

A india				Availal	ole External St	atic Pressure	(in. wg)			
Airflow (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	468	0.36	545	0.46	615	0.58	680	0.71	741	0.83
2400	486	0.41	560	0.53	627	0.65	691	0.78	750	0.91
2550	505	0.48	576	0.60	641	0.72	702	0.86	760	1.00
2700	524	0.55	592	0.68	655	0.81	714	0.95	771	1.09
2850	544	0.63	609	0.76	670	0.90	728	1.04	782	1.19
3000	564	0.71	627	0.85	686	1.00	741	1.14	794	1.30
3150	584	0.81	645	0.95	702	1.10	756	1.26	807	1.42
3300	604	0.91	663	1.06	719	1.22	771	1.38	821	1.54
3450	625	1.02	682	1.18	736	1.34	787	1.51	835	1.68
3600	646	1.15	701	1.31	753	1.48	803	1.65	850	1.82
3750	667	1.28	720	1.45	771	1.62	819	1.80	865	1.98

A inflant				Availal	ole External S	tatic Pressure	(in. wg)			
Airflow (Cfm)	1	.2	1.	.4	1	.6	1.	.8		2.0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	799	0.97	854	1.11	907	1.26	957	1.40	1005	1.56
2400	807	1.05	860	1.20	912	1.35	961	1.50	1008	1.66
2550	815	1.14	867	1.29	918	1.45	966	1.61	1013	1.77
2700	824	1.24	875	1.40	925	1.56	972	1.72	1018	1.89
2850	834	1.35	884	1.51	932	1.67	979	1.84	1024	2.02
3000	845	1.46	894	1.63	941	1.80	986	1.97	1030	2.15
3150	857	1.58	904	1.75	950	1.93	995	2.11	1038	2.29
3300	869	1.71	916	1.89	960	2.07	1004	2.25	1046	2.44
3450	882	1.85	928	2.03	971	2.22	1014	2.41	1055	2.60
3600	896	2.00	940	2.19	983	2.38	1025	2.57	1065	2.77
3750	910	2.16	953	2.35	995	2.55	1036	2.75	1076	2.95

LEGEND

Bhp — Brake Horsepower

High Range Motor/Drive Required

NOTES:

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 2.40 for low range motor/drive and 3.10 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 10 — Fan Performance — 48PGD09 Vertical Units

A inflam.				Availal	ole External St	atic Pressure	(in. wg)			
Airflow (Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0
(OIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	496	0.46	568	0.58	633	0.71	695	0.84	753	0.98
2700	512	0.53	582	0.65	646	0.79	705	0.92	762	1.07
2850	530	0.60	597	0.73	658	0.87	716	1.01	771	1.16
3000	547	0.68	612	0.82	672	0.96	728	1.11	782	1.26
3150	565	0.77	628	0.91	686	1.06	741	1.21	793	1.37
3300	583	0.86	644	1.01	701	1.17	754	1.32	805	1.49
3450	602	0.97	661	1.12	716	1.28	768	1.44	817	1.61
3600	621	1.08	678	1.24	732	1.41	782	1.57	831	1.75
3750	640	1.20	696	1.37	748	1.54	797	1.71	844	1.89
3900	659	1.33	713	1.50	764	1.68	812	1.86	858	2.05
4050	679	1.47	731	1.65	781	1.83	828	2.02	873	2.21
4200	698	1.62	750	1.81	798	2.00	844	2.19	888	2.38

Airflow (Cfm)				Availa	ble External S	tatic Pressure	e (in. wg)			
	1.	.2	1	.4	1	.6	1	.8		2.0
	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	808	1.13	861	1.28	912	1.43	960	1.59	1007	1.75
2700	816	1.22	867	1.37	917	1.53	965	1.70	1011	1.86
2850	824	1.31	874	1.47	923	1.64	970	1.81	1015	1.98
3000	833	1.42	882	1.58	930	1.75	976	1.93	1020	2.11
3150	843	1.53	891	1.70	937	1.88	982	2.05	1026	2.24
3300	854	1.66	900	1.83	946	2.01	990	2.19	1033	2.38
3450	865	1.79	911	1.97	955	2.15	998	2.34	1040	2.53
3600	877	1.93	922	2.11	965	2.30	1007	2.49	1048	2.69
3750	889	2.08	933	2.26	976	2.46	1017	2.65	1057	2.86
3900	903	2.24	945	2.43	987	2.63	1027	2.83	1067	3.03
4050	916	2.40	958	2.60	999	2.81	1038	3.01	1077	3.22
4200	930	2.58	971	2.79	1011	3.00	1050	3.21	1088	3.42

LEGEND

Bhp — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 2.40 for low range motor/drive and 3.70 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 11 — Fan Performance — 48PGE09 Vertical Units

Airflow				Availab	ole External St	atic Pressure	(in. wg)			
(Cfm)	0	.2	0	.4	0	.6	0.	8	1	.0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	499	0.47	571	0.59	637	0.72	698	0.85	756	0.99
2700	518	0.54	587	0.66	650	0.80	710	0.93	766	1.08
2850	537	0.62	603	0.75	665	0.88	722	1.03	777	1.18
3000	556	0.70	620	0.84	680	0.98	735	1.13	789	1.28
3150	575	0.79	637	0.93	695	1.08	749	1.24	801	1.40
3300	595	0.89	655	1.04	711	1.19	764	1.35	814	1.5
3450	615	1.00	673	1.16	727	1.32	778	1.48	828	1.6
3600	635	1.12	691	1.28	744	1.44	794	1.62	842	1.79
3750	655	1.24	710	1.41	761	1.58	810	1.76	856	1.94
3900	675	1.38	728	1.55	778	1.73	826	1.91	871	2.10
4050	695	1.52	747	1.71	796	1.89	842	2.08	886	2.2
4200	716	1.68	766	1.87	814	2.06	859	2.25	902	2.45

Airflow				Availa	ble External S	Static Pressure	e (in. wg)			
(Cfm)	1.	.2	1	.4	1	.6	1.	.8		2.0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	811	1.13	864	1.28	914	1.44	963	1.60	1009	1.76
2700	820	1.23	871	1.38	921	1.54	968	1.71	1014	1.88
2850	829	1.33	879	1.49	928	1.66	974	1.83	1019	2.00
3000	840	1.44	888	1.61	936	1.78	981	1.95	1026	2.13
3150	851	1.56	898	1.73	944	1.90	989	2.08	1033	2.27
3300	862	1.69	909	1.86	954	2.04	998	2.23	1040	2.41
3450	875	1.82	920	2.00	964	2.19	1007	2.38	1049	2.57
3600	888	1.97	932	2.15	975	2.34	1017	2.54	1058	2.73
3750	901	2.12	944	2.31	987	2.51	1028	2.71	1068	2.91
3900	915	2.29	957	2.48	999	2.68	1039	2.89	1078	3.09
4050	929	2.47	971	2.67	1011	2.87	1051	3.08	1089	3.29
4200	944	2.65	985	2.86	1024	3.07	1063	3.28	1100	3.50

LEGEND

Bhp — Brake Horsepower

High Range Motor/Drive Required

NOTES

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 2.40 for low range motor/drive and 3.70 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 12 — Fan Performance — 48PGF09 Vertical Units

A !				Availal	ole External St	atic Pressure	(in. wg)			
Airflow	0	.2	0	.4	0	.6	0.	.8	1	.0
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	505	0.48	576	0.60	641	0.72	702	0.86	760	1.00
2700	524	0.55	592	0.68	655	0.81	714	0.95	771	1.09
2850	544	0.63	609	0.76	670	0.90	728	1.04	782	1.19
3000	564	0.71	627	0.85	686	1.00	741	1.14	794	1.3
3150	584	0.81	645	0.95	702	1.10	756	1.26	807	1.4
3300	604	0.91	663	1.06	719	1.22	771	1.38	821	1.5
3450	625	1.02	682	1.18	736	1.34	787	1.51	835	1.6
3600	646	1.15	701	1.31	753	1.48	803	1.65	850	1.8
3750	667	1.28	720	1.45	771	1.62	819	1.80	865	1.9
3900	688	1.42	740	1.60	789	1.77	836	1.96	881	2.1
4050	709	1.57	760	1.75	808	1.94	854	2.13	898	2.3
4200	730	1.73	780	1.92	827	2.12	871	2.31	914	2.5

Airflow				Availa	ble External S	tatic Pressur	e (in. wg)			
(Cfm)	1.	.2	1.	.4	1	.6	1	.8		2.0
(CIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	815	1.14	867	1.29	918	1.45	966	1.61	1013	1.77
2700	824	1.24	875	1.40	925	1.56	972	1.72	1018	1.89
2850	834	1.35	884	1.51	932	1.67	979	1.84	1024	2.02
3000	845	1.46	894	1.63	941	1.80	986	1.97	1030	2.15
3150	857	1.58	904	1.75	950	1.93	995	2.11	1038	2.29
3300	869	1.71	916	1.89	960	2.07	1004	2.25	1046	2.44
3450	882	1.85	928	2.03	971	2.22	1014	2.41	1055	2.60
3600	896	2.00	940	2.19	983	2.38	1025	2.57	1065	2.77
3750	910	2.16	953	2.35	995	2.55	1036	2.75	1076	2.95
3900	925	2.33	967	2.53	1008	2.73	1048	2.93	1087	3.14
4050	940	2.52	981	2.72	1021	2.92	1060	3.13	1099	3.35
4200	956	2.71	996	2.92	1035	3.13	1074	3.34	1111	3.56

LEGEND **Bhp** — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 2.40 for low range motor/drive and 3.70 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 13 — Fan Performance — 48PGD12 Vertical Units

Airflow				Availal	ole External S	tatic Pressure	(in. wg)			
(Cfm)	0	.2	0	.4	0	.6	0	.8	1	.0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	566	0.72	630	0.86	688	1.00	744	1.15	797	1.31
3200	593	0.85	653	0.99	710	1.15	763	1.30	814	1.46
3400	620	0.99	678	1.15	732	1.30	783	1.47	832	1.64
3600	647	1.15	702	1.31	754	1.48	804	1.65	851	1.83
3800	674	1.33	728	1.50	778	1.67	825	1.85	871	2.03
4000	702	1.52	753	1.70	802	1.88	848	2.07	892	2.26
4200	729	1.73	779	1.92	826	2.11	870	2.31	913	2.50
4400	757	1.96	805	2.16	850	2.36	894	2.56	935	2.77
4600	785	2.21	832	2.42	875	2.63	917	2.84	958	3.05
4800	814	2.49	858	2.70	901	2.92	941	3.14	981	3.36
5000	842	2.78	885	3.01	926	3.23	966	3.46	1004	3.69

Airflow				Availa	ble External S	tatic Pressure	(in. wg)			
(Cfm)	1	.2	1	.4	1	.6	1.	8		2.0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	847	1.47	896	1.63	943	1.80	988	1.98	1032	2.16
3200	863	1.63	910	1.80	955	1.98	999	2.16	1042	2.35
3400	879	1.81	925	1.99	969	2.17	1012	2.36	1054	2.55
3600	897	2.01	941	2.19	984	2.38	1026	2.58	1066	2.78
3800	915	2.22	958	2.41	1000	2.61	1040	2.81	1080	3.02
4000	935	2.45	976	2.65	1017	2.86	1056	3.06	1095	3.28
4200	955	2.71	995	2.91	1035	3.12	1073	3.34	1110	3.55
4400	976	2.98	1015	3.19	1053	3.41	1090	3.63	_	_
4600	997	3.27	1035	3.49	_	_	_	_	_	_
4800	1019	3.59	_	_	_	_	_	_	_	_
5000	_	_	_	_	_	_	_	_	_	_

Bhp — Brake Horsepower

High Range Motor/Drive Required

NOTES:

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.10 for low range motor/drive and 3.70 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 14 — Fan Performance — 48PGE12 Vertical Units

				AVAILABLE E	XTERNAL ST	ATIC PRESS	URE (in. wg)			
AIRFLOW	0.	2	0.	4	0.	6	0.8	В	1.0)
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	574	0.74	636	0.87	695	1.02	750	1.17	802	1.32
3200	601	0.87	661	1.01	717	1.17	770	1.32	820	1.49
3400	629	1.02	686	1.17	740	1.33	791	1.49	840	1.66
3600	657	1.18	712	1.34	764	1.51	813	1.68	860	1.86
3800	686	1.36	739	1.53	788	1.71	836	1.89	881	2.07
4000	715	1.56	765	1.74	813	1.93	859	2.12	903	2.31
4200	744	1.78	792	1.97	839	2.17	883	2.36	925	2.56
4400	773	2.03	820	2.22	864	2.43	907	2.63	949	2.84
4600	802	2.29	848	2.50	891	2.71	932	2.92	972	3.13
4800	832	2.58	876	2.79	917	3.01	958	3.23	996	3.45
5000	862	2.88	904	3.11	944	3.34	983	3.56	_	_

			1	AVAILABLE I	EXTERNAL ST	ATIC PRESS	URE (in. wg)			
AIRFLOW (Cfm)	1.	2	1.4	4	1.0	6	1.8	В	2.0)
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	853	1.48	901	1.65	948	1.82	993	2.00	1037	2.18
3200	869	1.65	916	1.83	961	2.00	1005	2.19	1048	2.37
3400	887	1.84	932	2.02	976	2.20	1019	2.39	1060	2.58
3600	905	2.04	949	2.23	992	2.42	1033	2.61	1074	2.81
3800	925	2.26	967	2.46	1009	2.65	1049	2.86	1088	3.06
4000	945	2.50	987	2.70	1027	2.91	1066	3.12	1104	3.33
4200	967	2.76	1007	2.97	1046	3.18	1084	3.40	1121	3.62
4400	988	3.05	1027	3.26	1065	3.48	1102	3.70	_	_
4600	1011	3.35	1049	3.57	-	_	_	_	_	_
4800	1034	3.68	_	_	_	_	_	_		_
5000	_	_	_	_	_	_	_	_	_	

LEGEND

Bhp — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.10 for low range motor/drive and 3.70 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 15 — Fan Performance — 48PGF12 Vertical Units

				AVAILABLE E	EXTERNAL ST	ATIC PRESS	URE (in. wg)			
AIRFLOW (Cfm)	0.	2	0.4	4	0.0	6	0.8	В	1.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	578	0.74	640	0.88	698	1.03	753	1.18	805	1.33
3200	606	0.88	665	1.03	721	1.18	774	1.34	824	1.50
3400	635	1.03	691	1.18	745	1.34	795	1.51	844	1.68
3600	663	1.20	718	1.36	769	1.53	818	1.70	865	1.88
3800	693	1.38	745	1.56	794	1.73	841	1.91	886	2.10
4000	722	1.59	772	1.77	820	1.95	865	2.14	909	2.33
4200	752	1.81	800	2.00	846	2.20	889	2.39	932	2.59
4400	781	2.06	828	2.26	872	2.46	914	2.66	955	2.87
4600	811	2.33	856	2.54	899	2.75	940	2.96	980	3.17
4800	841	2.62	884	2.84	926	3.05	966	3.28	1004	3.50
5000	871	2.94	913	3.16	953	3.39	992	3.62	_	_

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	(a)		
AIRFLOW	1.	2	1.	4	1.	6	` 1.	8	2.	0
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	856	1.49	904	1.66	951	1.83	996	2.01	1040	2.19
3200	873	1.67	919	1.84	965	2.02	1008	2.20	1051	2.39
3400	891	1.85	936	2.03	980	2.22	1022	2.41	1064	2.60
3600	910	2.06	954	2.25	996	2.44	1037	2.63	1078	2.83
3800	930	2.29	972	2.48	1014	2.68	1054	2.88	1093	3.09
4000	951	2.53	992	2.73	1032	2.94	1071	3.15	1109	3.36
4200	973	2.80	1013	3.00	1051	3.22	1089	3.43	1126	3.65
4400	995	3.08	1034	3.30	1072	3.52	_	_	_	_
4600	1018	3.39	1056	3.61	_	_	_	_	_	_
4800	_	_	-	_	-	_	-	_	_	_
5000	_	_	_	_		_	_	_	_	_

Bhp — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.10 for low range motor/drive and 3.70 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 16 — Fan Performance — 48PGD14 Vertical Units

			,	AVAILABLE I	EXTERNAL ST	ATIC PRESS	URE (in. wg)			
AIRFLOW (Cfm)	0.	2	0.4	1	0.0	6	0.8	В	1.0)
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	667	1.28	721	1.45	772	1.62	820	1.80	866	1.98
3950	695	1.47	747	1.65	796	1.83	842	2.01	887	2.20
4150	723	1.68	772	1.86	820	2.05	865	2.25	908	2.44
4350	750	1.90	799	2.10	844	2.30	888	2.50	930	2.70
4550	778	2.15	825	2.35	869	2.56	911	2.77	952	2.98
4750	807	2.42	851	2.63	894	2.85	935	3.06	975	3.28
4950	835	2.71	878	2.93	920	3.15	960	3.38	998	3.61
5150	863	3.02	905	3.25	946	3.48	984	3.72	1022	3.95
5350	892	3.36	933	3.60	972	3.84	1009	4.08	1046	4.32
5550	920	3.72	960	3.97	998	4.22	1035	4.47	1070	4.72
5750	949	4.10	987	4.36	1024	4.62	1060	4.88	1095	5.14
5950	978	4.52	1015	4.78	1051	5.05	_	_	_	_
6150	1006	4.96	1043	5.23	_		_	_	_	_
6250	1021	5.19	_		_	_	_	_	_	_

			-	AVAILABLE E	EXTERNAL ST	ATIC PRESS	URE (in. wg)			
AIRFLOW (Cfm)	1.3	2	1.4	4	1.6	3	1.8	3	2.0)
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	911	2.17	954	2.36	996	2.55	1037	2.75	1076	2.95
3950	930	2.39	972	2.59	1012	2.79	1052	3.00	1091	3.21
4150	950	2.64	991	2.85	1030	3.05	1069	3.27	1106	3.48
4350	971	2.91	1010	3.12	1048	3.34	1086	3.55	1123	3.78
4550	992	3.20	1030	3.41	1068	3.64	1104	3.86	1140	4.09
4750	1013	3.50	1051	3.73	1087	3.96	1123	4.19	1158	4.43
4950	1036	3.84	1072	4.07	1108	4.31	1142	4.55	1176	4.79
5150	1058	4.19	1094	4.43	1129	4.68	1162	4.93	1196	5.18
5350	1082	4.57	1116	4.82	1150	5.07	-	_	_	_
5550	1105	4.98	1139	5.23	_	1				_
5750	_	_	_	_	_	_	_	_		_
5950	_	_	_	_	_	_	_	_	_	_
6150		_	_	_	_	_	_	_	_	_
6250	_	_	_	_	_	_	_	_		_

Bhp — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.70 for low range motor/drive and 5.25 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 17 — Fan Performance — 48PGE14 Vertical Units

AIDELOW			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	rg)		
AIRFLOW (Cfm)	0.:	2	0.4	4	0.0	6	0.	В	1.0)
(CIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	679	1.31	732	1.49	782	1.66	830	1.84	876	2.02
3950	708	1.51	759	1.69	807	1.87	853	2.06	897	2.25
4150	737	1.73	786	1.92	832	2.11	877	2.30	920	2.50
4350	766	1.96	813	2.16	858	2.36	901	2.56	943	2.76
4550	795	2.22	841	2.43	884	2.63	926	2.84	966	3.06
4750	825	2.50	869	2.72	911	2.93	951	3.15	990	3.37
4950	854	2.80	897	3.03	938	3.25	977	3.48	1015	3.71
5150	884	3.13	925	3.36	965	3.60	1003	3.83	1040	4.07
5350	914	3.49	954	3.73	992	3.97	1029	4.21	1065	4.46
5550	944	3.86	982	4.11	1020	4.36	1056	4.62	1091	4.87
5750	974	4.27	1011	4.53	1048	4.79	1083	5.05		-
5950	1004	4.70	1040	4.97	1076	5.24	-	-		-
6150	1034	5.17	**	-				-		-
6250	-	_	_	_			_	-	_	_

			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	/g)		
AIRFLOW	1.3	2	1.	4	1.4	6	1.8	8	2.	0
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	920	2.21	963	2.40	1004	2.59	1045	2.79	1084	3.00
3950	940	2.44	982	2.64	1022	2.84	1061	3.05	1100	3.26
4150	961	2.70	1001	2.90	1041	3.11	1079	3.33	1116	3.54
4350	983	2.97	1022	3.19	1060	3.40	1097	3.62	1134	3.85
4550	1005	3.27	1043	3.49	1080	3.72	1117	3.94	1152	4.17
4750	1028	3.59	1065	3.82	1101	4.05	1137	4.29	1171	4.52
4950	1052	3.94	1088	4.17	1123	4.41	1157	4.65	1191	4.90
5150	1076	4.31	1111	4.55	1145	4.80	1179	5.05	_	_
5350	1100	4.70	1134	4.95	1168	5.21	_	_	_	_
5550	1125	5.13	_				_	_		_
5750	_	_	_	_	_	_	_	_	_	_
5950	_		_	_			_	_	_	_
6150	_	_	_	_	_	_	_	_	_	_
6250		_	_	_	_	_	_	_	_	_
LEGEN	D	-		-	-	-	-	-	-	-

 ${\bf Bhp} - {\bf Brake\ Horsepower}$

High Range Motor/Drive Required

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.710 for low range motor/drive and 5.25 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 18 — Fan Performance — 48PGF14 Vertical Units

AIDELOW			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	/g)		
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.	8	1.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	685	1.33	738	1.51	788	1.68	835	1.86	881	2.04
3950	715	1.54	765	1.71	813	1.90	859	2.08	903	2.27
4150	744	1.76	793	1.94	839	2.13	883	2.33	926	2.53
4350	774	2.00	821	2.19	865	2.39	908	2.59	950	2.80
4550	804	2.26	849	2.47	892	2.67	934	2.88	974	3.10
4750	834	2.54	877	2.76	919	2.98	959	3.19	998	3.42
4950	864	2.85	906	3.08	946	3.30	985	3.53	1023	3.76
5150	894	3.19	935	3.42	974	3.65	1012	3.89	1049	4.13
5350	924	3.55	964	3.79	1002	4.03	1039	4.28	1074	4.52
5550	955	3.94	993	4.19	1030	4.44	1066	4.69	1101	4.94
5750	985	4.35	1023	4.61	1058	4.87	1093	5.13		
5950	1016	4.79	1052	5.06					_	_
6150		_		_	_			_	_	_
6250			_	_	_	_	_	_	_	_

AIDELOW			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	rg)		
AIRFLOW (Cfm)	1.3	2	1.4	4	1.0	6	1.8	3	2.0	0
(CIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	925	2.23	968	2.42	1009	2.62	1050	2.82	1089	3.02
3950	946	2.47	987	2.67	1027	2.87	1067	3.08	1105	3.29
4150	967	2.73	1007	2.93	1047	3.14	1085	3.36	1122	3.58
4350	990	3.01	1029	3.22	1067	3.44	1104	3.66	1140	3.89
4550	1012	3.31	1050	3.53	1087	3.76	1123	3.99	1159	4.22
4750	1036	3.64	1073	3.87	1109	4.10	1144	4.34	1178	4.57
4950	1060	3.99	1096	4.23	1131	4.47	1165	4.71	1199	4.96
5150	1084	4.37	1119	4.61	1153	4.86	1187	5.11		_
5350	1109	4.77	1143	5.02	_		_	_	_	
5550	1135	5.20	_	_	_	_	_	_	_	_
5750	_		_	_	_	_	_		_	
5950		_	_	_	_	_	_	_	_	
6150		_	_	_	_	_	_	_	_	_
6250	_	_	_	_	_		_			_

Bhp — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.70 for low range motor/drive and 5.25 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 19 — Fan Performance — 48PGD16 Vertical Units

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	g)		
AIRFLOW (Cfm)	0.	.2	0.	4	0.	6	0.8	В	1.4	0
(CIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	606	0.91	693	1.25	764	1.58	827	1.91	884	2.23
4800	633	1.05	718	1.41	789	1.77	851	2.12	907	2.47
5100	661	1.21	744	1.60	814	1.98	875	2.35	930	2.73
5400	689	1.39	771	1.80	839	2.20	899	2.60	954	3.00
5700	717	1.58	797	2.01	864	2.44	924	2.87	978	3.29
6000	745	1.80	824	2.25	890	2.70	949	3.15	1002	3.60
6300	774	2.04	851	2.51	916	2.98	974	3.46	1027	3.93
6600	803	2.30	878	2.78	942	3.28	1000	3.78	1052	4.27
6900	832	2.58	906	3.08	969	3.61	1025	4.13	1077	4.65
7200	861	2.89	933	3.41	996	3.95	1051	4.50	1102	5.04
7500	891	3.22	961	3.76	1023	4.32	1078	4.89	1128	5.46

AIDELOW			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	g)		
AIRFLOW (Cfm)	1.	2	1.	4	1.	6	1.	8	2.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	937	2.56	987	2.88	1034	3.21	1079	3.53	1122	3.86
4800	959	2.82	1008	3.16	1054	3.51	1098	3.85	1141	4.20
5100	981	3.09	1030	3.46	1075	3.83	1119	4.20	1161	4.56
5400	1004	3.39	1052	3.78	1097	4.17	1140	4.56	1181	4.95
5700	1028	3.70	1075	4.12	1119	4.53	1161	4.94	1202	5.35
6000	1051	4.04	1098	4.47	1142	4.91	1183	5.34	1224	5.77
6300	1075	4.39	1121	4.85	1165	5.31	1206	5.76	1246	6.22
6600	1100	4.76	1145	5.25	1188	5.73	1229	6.21	1268	6.68
6900	1125	5.16	1169	5.67	1212	6.17	1252	6.67	1291	7.17
7200	1149	5.58	1194	6.11	1236	6.64	1276	7.16		
7500	1175	6.02	1219	6.58	1260	7.13	_		_	_

Bhp — Brake Horsepower

Mid-Low Range Motor/Drive Required

High Range Motor Required

NOTES:

- 1. Motor drive range is 710 to 879 rpm for low range motor/drive and 872 to 1066 rpm for mid-low range motor/drive, and 1066 to 1260 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.70 for low range motor/drive and 5.25 for mid-low range motor/drive and 7.50 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 20 — Fan Performance — 48PGE16 Vertical Units

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	(p)		
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.	В	1.4	0
(CIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	646	1.05	727	1.40	795	1.74	856	2.07	911	2.40
4800	678	1.23	756	1.60	822	1.96	882	2.31	937	2.67
5100	709	1.42	785	1.82	851	2.20	909	2.58	962	2.96
5400	741	1.64	815	2.06	879	2.47	936	2.87	989	3.27
5700	774	1.88	846	2.32	908	2.75	964	3.18	1016	3.60
6000	806	2.14	876	2.60	937	3.06	993	3.52	1043	3.96
6300	839	2.42	907	2.91	967	3.40	1021	3.88	1071	4.35
6600	872	2.74	938	3.25	997	3.76	1050	4.26	1100	4.76
6900	905	3.08	970	3.61	1027	4.15	1080	4.68	1128	5.20
7200	938	3.45	1002	4.01	1058	4.57	1109	5.12	1157	5.66
7500	972	3.85	1034	4.43	1089	5.01	1139	5.59	1186	6.16

AIDELOW			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	g)		
AIRFLOW (Cfm)	1.	2	1.	4	1.	6	1.	8	2.	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	963	2.72	1012	3.05	1058	3.38	1103	3.71	1145	4.05
4800	988	3.02	1036	3.37	1081	3.72	1125	4.07	1167	4.42
5100	1012	3.33	1060	3.70	1105	4.07	1147	4.45	1189	4.82
5400	1038	3.67	1085	4.06	1129	4.45	1171	4.85	1211	5.24
5700	1064	4.02	1110	4.44	1153	4.86	1195	5.27	1235	5.69
6000	1091	4.41	1136	4.85	1179	5.29	1219	5.72	1259	6.16
6300	1118	4.82	1162	5.28	1204	5.74	1245	6.20	1283	6.66
6600	1146	5.25	1189	5.74	1231	6.23	1270	6.71		_
6900	1173	5.72	1216	6.23	1257	6.74	1296	7.24	_	_
7200	1202	6.21	1244	6.74	1284	7.28	_		_	_
7500	1230	6.73	1272	7.29	_	_		1	_	

LEGEND

Bhp — Brake Horsepower

Mid-Low Range Motor/Drive Required

High Range Motor Required

- 1. Motor drive range is 710 to 879 rpm for low range motor/drive and 872 to 1066 rpm for mid-low range motor/drive, and 1066 to 1260 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.70 for low range motor/drive and 5.25 for mid-low range motor/drive and 7.50 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 21 — Fan Performance — 48PGF16 Vertical Units

			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	/g)		
AIRFLOW	0.	2	0.	4	0.	6	0.	8	1.	0
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	660	1.11	739	1.46	806	1.80	867	2.13	922	2.46
4800	693	1.29	769	1.67	835	2.03	894	2.39	948	2.74
5100	725	1.50	800	1.90	864	2.29	922	2.67	975	3.05
5400	759	1.73	831	2.15	894	2.57	950	2.97	1002	3.37
5700	792	1.98	862	2.43	924	2.87	979	3.30	1030	3.73
6000	826	2.26	894	2.73	954	3.20	1009	3.65	1059	4.11
6300	860	2.57	926	3.06	985	3.55	1038	4.04	1088	4.51
6600	894	2.90	959	3.42	1016	3.94	1069	4.44	1117	4.94
6900	929	3.26	992	3.81	1048	4.35	1099	4.88	1147	5.41
7200	963	3.66	1024	4.23	1079	4.79	1130	5.35	1177	5.90
7500	998	4.08	1058	4.68	1111	5.27	1161	5.85	1207	6.42

			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	/g)		
AIRFLOW (Cfm)	1.	2	1.	4	1.	6	1.4	8	2.	0
(CIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	974	2.79	1022	3.12	1069	3.46	1113	3.79	1155	4.13
4800	999	3.10	1047	3.45	1092	3.80	1135	4.16	1177	4.51
5100	1025	3.42	1072	3.80	1116	4.17	1159	4.55	1200	4.93
5400	1051	3.77	1097	4.17	1141	4.57	1183	4.97	1224	5.36
5700	1078	4.15	1124	4.57	1167	4.99	1208	5.41	1248	5.83
6000	1106	4.55	1151	5.00	1193	5.44	1234	5.88	1273	6.32
6300	1134	4.98	1178	5.45	1220	5.92	1260	6.38	1298	6.84
6600	1163	5.44	1206	5.93	1247	6.42	1286	6.91	_	_
6900	1191	5.93	1234	6.44	1274	6.96		_	_	_
7200	1221	6.45	1263	6.99	_	_	_	_	_	_
7500	1250	7.00	_	_	_	_	_	_	_	_

Bhp — Brake Horsepower

Mid-Low Range Motor/Drive Required

High Range Motor Required

- NOTES:

 1. Motor drive range is 710 to 879 rpm for low range motor/drive and 872 to 1066 rpm for mid—low range motor/drive, and 1066 to 1260 rpm for high range motor/drive. All other rpms require a field-supplied drive.

 2. Maximum continuous bhp is 3.70 for low range motor/drive and 5.25 for mid—low range motor/drive and 7.50 for high range motor/drive.

 3. See page 48 for General Fan Performance Notes.

Table 22 — Fan Performance — 48PGD08 Horizontal Units

			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	rg)		
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.0	3	1.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	409	0.29	493	0.39	567	0.50	636	0.62	700	0.75
2400	422	0.33	503	0.44	576	0.56	642	0.68	704	0.81
2550	436	0.38	515	0.49	585	0.62	650	0.74	710	0.88
2700	450	0.43	527	0.55	595	0.68	658	0.81	717	0.95
2850	465	0.49	539	0.62	606	0.75	667	0.89	724	1.03
3000	480	0.56	552	0.69	617	0.83	676	0.97	732	1.12
3150	496	0.63	566	0.77	629	0.91	687	1.06	741	1.21
3300	511	0.70	579	0.85	641	1.00	698	1.16	751	1.31
3450	527	0.79	593	0.94	653	1.10	709	1.26	761	1.42
3600	543	0.88	608	1.04	666	1.21	721	1.37	772	1.54
3750	560	0.98	622	1.15	680	1.32	733	1.49	783	1.66

			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	/g)		
AIRFLOW (Cfm)	1.	2	1.	4	1.	6	1.3	8	2.0)
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	760	0.88	817	1.01	871	1.16	923	1.30	972	1.45
2400	763	0.94	819	1.09	872	1.23	923	1.38	972	1.54
2550	768	1.02	822	1.16	874	1.32	924	1.47	973	1.63
2700	773	1.10	826	1.25	877	1.40	927	1.56	974	1.73
2850	779	1.18	831	1.34	881	1.50	929	1.66	976	1.83
3000	786	1.27	837	1.43	886	1.60	933	1.77	979	1.94
3150	793	1.37	843	1.54	891	1.70	938	1.88	983	2.06
3300	802	1.48	851	1.65	898	1.82	943	2.00	987	2.18
3450	811	1.59	859	1.76	905	1.94	949	2.12	992	2.31
3600	820	1.71	867	1.89	912	2.07	956	2.26	998	2.45
3750	830	1.84	876	2.02	920	2.21	963	2.40	1005	2.60

LEGEND

Bhp — Brake Horsepower

High Range Motor/Drive Required

NOTES:

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 2.40 for low range motor/drive and 3.10 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 23 — Fan Performance — 48PGE08 Horizontal Units

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	/g)		
AIRFLOW (Cfm)	0.	2	0.4	4	0.0	6	0.8	3	1.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	408	0.28	492	0.39	567	0.50	635	0.62	699	0.74
2400	424	0.33	505	0.44	577	0.56	644	0.68	706	0.81
2550	440	0.38	519	0.50	588	0.62	653	0.75	713	0.88
2700	457	0.44	532	0.56	600	0.69	662	0.82	721	0.96
2850	473	0.50	547	0.63	612	0.77	673	0.90	730	1.05
3000	490	0.57	561	0.71	625	0.85	684	0.99	740	1.14
3150	507	0.65	576	0.79	638	0.94	695	1.08	750	1.24
3300	524	0.73	591	0.88	651	1.03	708	1.19	760	1.34
3450	542	0.82	606	0.98	665	1.13	720	1.29	772	1.46
3600	559	0.92	622	1.08	679	1.24	733	1.41	783	1.58
3750	577	1.02	638	1.19	694	1.36	746	1.53	795	1.71

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	/g)		
AIRFLOW (Cfm)	1.	2	1.4	4	1.0	6	1.4	8	2.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	760	0.88	817	1.01	871	1.16	923	1.30	972	1.45
2400	765	0.95	820	1.09	874	1.24	924	1.39	973	1.54
2550	770	1.03	825	1.17	877	1.32	927	1.48	975	1.64
2700	777	1.11	830	1.26	881	1.42	930	1.58	977	1.74
2850	784	1.20	836	1.35	886	1.51	934	1.68	981	1.85
3000	793	1.29	843	1.45	892	1.62	939	1.79	985	1.96
3150	801	1.40	851	1.56	899	1.73	945	1.91	990	2.09
3300	811	1.51	859	1.68	906	1.85	951	2.03	995	2.21
3450	821	1.63	868	1.80	914	1.98	958	2.16	1001	2.35
3600	831	1.75	878	1.93	923	2.11	966	2.30	1008	2.49
3750	843	1.89	888	2.07	932	2.26	974	2.45	1016	2.65

LEGEND

Bhp — Brake Horsepower
High Range Motor/Drive Required

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 2.40 for low range motor/drive and 3.10 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 24 — Fan Performance — 48PGF08 Horizontal Units

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	rg)		
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.0	3	1.0	0
(CIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	413	0.29	496	0.39	571	0.51	639	0.63	703	0.75
2400	429	0.34	510	0.45	581	0.57	647	0.69	709	0.82
2550	446	0.39	524	0.51	593	0.63	657	0.76	717	0.89
2700	464	0.45	538	0.57	605	0.70	667	0.83	726	0.97
2850	481	0.52	553	0.65	618	0.78	678	0.92	735	1.06
3000	499	0.59	569	0.72	632	0.86	690	1.01	746	1.16
3150	517	0.67	584	0.81	646	0.95	703	1.10	756	1.26
3300	535	0.75	600	0.90	660	1.05	715	1.21	768	1.37
3450	553	0.85	617	1.00	675	1.16	729	1.32	780	1.48
3600	571	0.95	633	1.11	690	1.27	742	1.44	792	1.61
3750	590	1.06	650	1.23	705	1.40	756	1.57	805	1.74

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. v	vg)		
AIRFLOW (Cfm)	1.	2	1.	4	1.	6	1.	8	2.	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2250	763	0.88	820	1.02	874	1.16	925	1.31	974	1.46
2400	768	0.96	824	1.10	877	1.25	927	1.40	976	1.55
2550	774	1.04	829	1.18	881	1.33	930	1.49	978	1.65
2700	781	1.12	834	1.27	885	1.43	934	1.59	981	1.75
2850	789	1.21	841	1.37	891	1.53	939	1.70	985	1.87
3000	798	1.31	849	1.47	897	1.64	944	1.81	990	1.98
3150	808	1.42	857	1.58	905	1.75	951	1.93	995	2.11
3300	818	1.53	866	1.70	913	1.88	958	2.06	1001	2.24
3450	829	1.65	876	1.83	921	2.01	965	2.19	1008	2.38
3600	840	1.78	886	1.96	931	2.15	974	2.34	1016	2.53
3750	852	1.92	897	2.11	941	2.30	983	2.49	1024	2.69
LEGEN	D									

Bhp — Brake Horsepower

High Range Motor/Drive Required

NOTES:

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 2.40 for low range motor/drive and 3.10 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 25 — Fan Performance — 48PGD09 Horizontal Units

AIDELOW			AV	AILABLE EX	TERNAL ST	TATIC PRES	SURE (in. v	va)		
AIRFLOW	0.	2	0.	4	0.	6	0.	8	1.	0
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	436	0.38	515	0.49	585	0.62	650	0.74	710	0.88
2700	450	0.43	527	0.55	595	0.68	658	0.81	717	0.95
2850	465	0.49	539	0.62	606	0.75	667	0.89	724	1.03
3000	480	0.56	552	0.69	617	0.83	676	0.97	732	1.12
3150	496	0.63	566	0.77	629	0.91	687	1.06	741	1.21
3300	511	0.70	579	0.85	641	1.00	698	1.16	751	1.31
3450	527	0.79	593	0.94	653	1.10	709	1.26	761	1.42
3600	543	0.88	608	1.04	666	1.21	721	1.37	772	1.54
3750	560	0.98	622	1.15	680	1.32	733	1.49	783	1.66
3900	576	1.08	637	1.26	693	1.44	745	1.61	794	1.79
4050	593	1.19	652	1.38	707	1.56	758	1.75	806	1.93
4200	610	1.32	668	1.51	721	1.70	771	1.89	818	2.08

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. v	/a)		
AIRFLOW	1.	2	1.	4	1.	6	1.	8	2.0	0
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	768	1.02	822	1.16	874	1.32	924	1.47	973	1.63
2700	773	1.10	826	1.25	877	1.40	927	1.56	974	1.73
2850	779	1.18	831	1.34	881	1.50	929	1.66	976	1.83
3000	786	1.27	837	1.43	886	1.60	933	1.77	979	1.94
3150	793	1.37	843	1.54	891	1.70	938	1.88	983	2.06
3300	802	1.48	851	1.65	898	1.82	943	2.00	987	2.18
3450	811	1.59	859	1.76	905	1.94	949	2.12	992	2.31
3600	820	1.71	867	1.89	912	2.07	956	2.26	998	2.45
3750	830	1.84	876	2.02	920	2.21	963	2.40	1005	2.60
3900	841	1.98	886	2.16	929	2.35	971	2.55	1012	2.75
4050	852	2.12	896	2.31	938	2.51	980	2.71	1020	2.91
4200	863	2.27	906	2.47	948	2.67	989	2.88	1028	3.09

LEGEND

Bhp — Brake Horsepower
High Range Motor/Drive Required

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 2.40 for low range motor/drive and 3.70 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 26 — Fan Performance — 48PGE09 Horizontal Units

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. v	va)	_	
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.	8	1.	0
(Cim)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	440	0.38	519	0.50	588	0.62	653	0.75	713	0.88
2700	457	0.44	532	0.56	600	0.69	662	0.82	721	0.96
2850	473	0.50	547	0.63	612	0.77	673	0.90	730	1.05
3000	490	0.57	561	0.71	625	0.85	684	0.99	740	1.14
3150	507	0.65	576	0.79	638	0.94	695	1.08	750	1.24
3300	524	0.73	591	0.88	651	1.03	708	1.19	760	1.34
3450	542	0.82	606	0.98	665	1.13	720	1.29	772	1.46
3600	559	0.92	622	1.08	679	1.24	733	1.41	783	1.58
3750	577	1.02	638	1.19	694	1.36	746	1.53	795	1.71
3900	594	1.13	654	1.31	708	1.49	759	1.66	808	1.84
4050	612	1.25	670	1.44	723	1.62	773	1.80	821	1.99
4200	630	1.38	686	1.57	738	1.76	787	1.95	834	2.14

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. v	va)		
AIRFLOW	1.	2	1.	4	1.	6	1.	8	2.	0
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	770	1.03	825	1.17	877	1.32	927	1.48	975	1.64
2700	777	1.11	830	1.26	881	1.42	930	1.58	977	1.74
2850	784	1.20	836	1.35	886	1.51	934	1.68	981	1.85
3000	793	1.29	843	1.45	892	1.62	939	1.79	985	1.96
3150	801	1.40	851	1.56	899	1.73	945	1.91	990	2.09
3300	811	1.51	859	1.68	906	1.85	951	2.03	995	2.21
3450	821	1.63	868	1.80	914	1.98	958	2.16	1001	2.35
3600	831	1.75	878	1.93	923	2.11	966	2.30	1008	2.49
3750	843	1.89	888	2.07	932	2.26	974	2.45	1016	2.65
3900	854	2.03	898	2.22	941	2.41	983	2.61	1024	2.81
4050	866	2.18	909	2.37	951	2.57	992	2.77	1032	2.98
4200	878	2.34	921	2.54	962	2.74	1002	2.95	1041	3.16

Bhp — Brake Horsepower

High Range Motor/Drive Required

NOTES:

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 2.40 for low range motor/drive and 3.70 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 27 — Fan Performance — 48PGF09 Horizontal Units

AIDELOW			AV	AILABLE EX	TERNAL ST	TATIC PRES	SSURE (in. v	va)		
AIRFLOW	0.	2	0.	4	0.	6	0.	8	1.	0
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	446	0.39	524	0.51	593	0.63	657	0.76	717	0.89
2700	464	0.45	538	0.57	605	0.70	667	0.83	726	0.97
2850	481	0.52	553	0.65	618	0.78	678	0.92	735	1.06
3000	499	0.59	569	0.72	632	0.86	690	1.01	746	1.16
3150	517	0.67	584	0.81	646	0.95	703	1.10	756	1.26
3300	535	0.75	600	0.90	660	1.05	715	1.21	768	1.37
3450	553	0.85	617	1.00	675	1.16	729	1.32	780	1.48
3600	571	0.95	633	1.11	690	1.27	742	1.44	792	1.61
3750	590	1.06	650	1.23	705	1.40	756	1.57	805	1.74
3900	608	1.18	667	1.35	720	1.53	771	1.71	819	1.89
4050	627	1.30	684	1.49	736	1.67	786	1.85	832	2.04
4200	646	1.44	701	1.63	752	1.82	801	2.01	846	2.20

AUDEL OW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. v	va)		
AIRFLOW	1.	2	1.	.4	1.	6	` 1.	8	2.	0
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
2550	774	1.04	829	1.18	881	1.33	930	1.49	978	1.65
2700	781	1.12	834	1.27	885	1.43	934	1.59	981	1.75
2850	789	1.21	841	1.37	891	1.53	939	1.70	985	1.87
3000	798	1.31	849	1.47	897	1.64	944	1.81	990	1.98
3150	808	1.42	857	1.58	905	1.75	951	1.93	995	2.11
3300	818	1.53	866	1.70	913	1.88	958	2.06	1001	2.24
3450	829	1.65	876	1.83	921	2.01	965	2.19	1008	2.38
3600	840	1.78	886	1.96	931	2.15	974	2.34	1016	2.53
3750	852	1.92	897	2.11	941	2.30	983	2.49	1024	2.69
3900	864	2.07	908	2.26	951	2.46	993	2.65	1033	2.86
4050	877	2.23	920	2.42	962	2.62	1003	2.83	1042	3.03
4200	890	2.40	933	2.60	974	2.80	1013	3.01	1052	3.22

LEGEND

Bhp — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 568 to 771 rpm for low range motor/drive and 812 to 1015 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- $2. \ \, \text{Maximum continuous bhp is 2.40 for low range motor/drive and 3.70 for high range motor/drive.}$
- 3. See page 48 for General Fan Performance Notes.

Table 28 — Fan Performance — 48PGD12 Horizontal Units

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	rg)		
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.8	3	1.	0
(CIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	502	0.60	571	0.73	634	0.87	693	1.01	748	1.16
3200	525	0.70	592	0.85	652	0.99	709	1.14	762	1.30
3400	549	0.82	613	0.97	671	1.13	726	1.29	777	1.45
3600	573	0.95	634	1.11	691	1.28	743	1.44	793	1.61
3800	597	1.10	656	1.27	711	1.44	762	1.62	810	1.79
4000	621	1.26	678	1.44	731	1.62	781	1.80	828	1.99
4200	645	1.43	700	1.62	752	1.81	800	2.00	846	2.20
4400	669	1.62	723	1.83	772	2.02	819	2.22	864	2.42
4600	694	1.83	745	2.04	794	2.25	839	2.46	883	2.67
4800	719	2.06	768	2.28	815	2.50	860	2.71	902	2.93
5000	743	2.30	791	2.53	837	2.76	880	2.98	922	3.21

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	g)		
AIRFLOW (Cfm)	1.3	2	1.4	4	1.0	6	1.8	3	2.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	800	1.32	851	1.48	899	1.64	946	1.82	992	1.99
3200	813	1.46	862	1.63	909	1.80	955	1.98	999	2.16
3400	827	1.62	874	1.79	920	1.97	964	2.15	1007	2.34
3600	841	1.79	887	1.97	932	2.15	975	2.34	1017	2.53
3800	857	1.97	901	2.16	945	2.35	986	2.55	1027	2.75
4000	873	2.18	916	2.37	958	2.56	999	2.77	1039	2.97
4200	889	2.39	932	2.59	973	2.80	1013	3.00	1051	3.22
4400	907	2.63	948	2.83	988	3.04	1027	3.26	1065	3.48
4600	925	2.88	965	3.09	1004	3.31	1042	3.53		-
4800	943	3.15	982	3.37	1020	3.59		_		_
5000	962	3.44	1000	3.67		-	-	-	-	
LEGENI	D									

Bhp — Brake Horsepower

High Range Motor/Drive Required

NOTES:

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.10 for low range motor/drive and 3.70 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 29 — Fan Performance — 48PGE12 Horizontal Units

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	/g)		
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.8	В	1.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	510	0.61	579	0.75	641	0.89	699	1.03	754	1.18
3200	535	0.72	600	0.87	660	1.01	716	1.16	769	1.32
3400	560	0.84	623	1.00	680	1.15	734	1.31	785	1.48
3600	585	0.98	645	1.14	701	1.31	753	1.47	802	1.65
3800	610	1.14	668	1.31	722	1.48	772	1.65	820	1.83
4000	635	1.30	691	1.48	743	1.66	792	1.85	839	2.03
4200	661	1.49	715	1.68	765	1.87	813	2.06	858	2.25
4400	687	1.69	739	1.89	788	2.09	834	2.29	878	2.49
4600	713	1.91	763	2.12	811	2.33	855	2.53	898	2.74
4800	739	2.15	788	2.37	834	2.58	877	2.80	919	3.02
5000	765	2.41	812	2.63	857	2.86	899	3.08	940	3.31

AIDELOW			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	rg)		
AIRFLOW (Cfm)	1.	2	1.	4	1.	6	1.8	3	2.	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	806	1.34	856	1.50	905	1.66	951	1.84	997	2.01
3200	820	1.48	868	1.65	915	1.82	961	2.00	1005	2.18
3400	834	1.64	881	1.82	927	2.00	971	2.18	1014	2.37
3600	850	1.82	896	2.00	940	2.19	983	2.38	1024	2.57
3800	866	2.01	911	2.20	954	2.39	995	2.59	1036	2.79
4000	884	2.22	927	2.42	969	2.61	1009	2.82	1049	3.02
4200	902	2.45	944	2.65	984	2.85	1024	3.06	1062	3.28
4400	920	2.69	961	2.90	1001	3.11	1039	3.33	1077	3.55
4600	939	2.96	979	3.17	1018	3.39	1055	3.61	-	-
4800	959	3.24	998	3.46	1035	3.69	_	-		
5000	979	3.54	-				-		_	•••

LEGEND

Bhp — Brake Horsepower
High Range Motor/Drive Required

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.10 for low range motor/drive and 3.70 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 30 — Fan Performance — 48PGF12 Horizontal Units

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	/g)		
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.	8	1.	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	514	0.62	583	0.75	645	0.89	702	1.04	757	1.19
3200	540	0.73	605	0.88	665	1.02	720	1.18	773	1.33
3400	565	0.86	628	1.01	685	1.17	739	1.33	790	1.49
3600	591	1.00	651	1.16	706	1.33	758	1.49	808	1.66
3800	617	1.16	675	1.33	728	1.50	778	1.67	826	1.85
4000	643	1.33	699	1.51	750	1.69	799	1.87	845	2.06
4200	670	1.52	723	1.71	773	1.90	820	2.09	865	2.28
4400	696	1.72	748	1.92	796	2.12	842	2.32	885	2.52
4600	723	1.95	772	2.16	819	2.37	864	2.57	906	2.78
4800	749	2.19	797	2.41	843	2.63	886	2.84	927	3.06
5000	776	2.46	823	2.69	867	2.91	909	3.14	949	3.36

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	/g)		
AIRFLOW (Cfm)	1.	2	1.	4	1.	6	1.4	8	2.	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3000	809	1.35	859	1.51	908	1.67	954	1.85	999	2.02
3200	823	1.50	872	1.66	919	1.84	964	2.01	1008	2.20
3400	839	1.66	886	1.83	931	2.01	975	2.20	1018	2.39
3600	855	1.84	900	2.02	944	2.21	987	2.40	1029	2.59
3800	872	2.04	916	2.22	959	2.42	1000	2.61	1041	2.81
4000	890	2.25	933	2.44	974	2.64	1015	2.85	1054	3.05
4200	908	2.48	950	2.68	990	2.89	1030	3.10	1068	3.31
4400	927	2.73	968	2.94	1007	3.15	1046	3.37	1083	3.59
4600	947	3.00	987	3.21	1025	3.43	1062	3.65	-	
4800	967	3.28	1006	3.51	_	_	-	_		
5000	988	3.59	_	_	_	_	_	_	_	_
LEGEN	D									

Bhp — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.10 for low range motor/drive and 3.70 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 31 — Fan Performance — 48PGD14 Horizontal Units

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	rg)		
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.	8	1.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	591	1.06	651	1.23	706	1.40	757	1.57	806	1.75
3950	615	1.22	672	1.40	726	1.57	776	1.75	823	1.94
4150	639	1.39	695	1.58	746	1.76	795	1.95	841	2.14
4350	663	1.58	717	1.77	767	1.97	814	2.17	859	2.36
4550	688	1.78	740	1.99	788	2.19	834	2.40	878	2.60
4750	712	2.00	763	2.22	810	2.43	855	2.65	897	2.86
4950	737	2.24	786	2.47	832	2.69	875	2.91	917	3.14
5150	762	2.50	809	2.73	853	2.97	896	3.20	937	3.43
5350	787	2.77	832	3.02	876	3.26	917	3.50	957	3.75
5550	811	3.07	856	3.33	898	3.58	938	3.83	977	4.08
5750	836	3.39	879	3.65	920	3.92	960	4.18	998	4.44
5950	861	3.72	903	4.00	943	4.28	982	4.55	1019	4.81
6150	886	4.09	927	4.37	966	4.66	1004	4.94	1040	5.21
6250	899	4.28	939	4.57	977	4.85	1015	5.14	_	_

AIDELOW			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	rg)		
AIRFLOW (Cfm)	1.	2	1.	4	1.0	6	1.4	8	2.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	853	1.93	898	2.11	941	2.30	983	2.49	1025	2.69
3950	869	2.12	912	2.31	955	2.51	996	2.71	1036	2.91
4150	885	2.34	928	2.53	969	2.74	1009	2.94	1048	3.15
4350	902	2.57	944	2.77	984	2.98	1023	3.19	1061	3.41
4550	920	2.81	961	3.03	1000	3.24	1038	3.46	1075	3.68
4750	938	3.08	978	3.30	1016	3.52	1053	3.75	1090	3.98
4950	957	3.36	996	3.59	1033	3.82	1069	4.05	1105	4.29
5150	976	3.67	1014	3.90	1050	4.14	1086	4.38	1121	4.62
5350	995	3.99	1032	4.23	1068	4.48	1103	4.72	1137	4.97
5550	1015	4.33	1051	4.58	1086	4.84	1120	5.09	_	_
5750	1035	4.70	1070	4.96	1105	5.22	_	_	_	_
5950	1055	5.08	_		_	_	_		_	_
6150	_	_	_			_	_	_	_	_
6250	_	_	_	_	_	_	_	_	_	_

Bhp — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.70 for low range motor/drive and 5.25 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 32 — Fan Performance — 48PGE14 Horizontal Units

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	rg)		
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.8	3	1.0	0
(CIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	604	1.10	662	1.26	717	1.43	767	1.61	816	1.78
3950	629	1.26	686	1.44	738	1.62	787	1.80	834	1.98
4150	655	1.44	709	1.63	760	1.82	808	2.00	853	2.20
4350	681	1.64	733	1.83	782	2.03	829	2.23	873	2.43
4550	706	1.85	757	2.06	805	2.26	850	2.47	893	2.68
4750	732	2.09	782	2.30	828	2.52	872	2.73	914	2.95
4950	759	2.34	806	2.56	851	2.79	894	3.01	935	3.24
5150	785	2.61	831	2.85	874	3.08	916	3.31	956	3.54
5350	811	2.91	856	3.15	898	3.39	939	3.63	978	3.88
5550	838	3.22	881	3.48	922	3.73	961	3.98	999	4.23
5750	864	3.56	906	3.82	946	4.08	985	4.34	1022	4.60
5950	891	3.92	931	4.19	970	4.46	1008	4.73	1044	5.00
6150	917	4.31	957	4.59	995	4.87	1032	5.15		
6250	931	4.51	970	4.80	1007	5.08	_			

			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	/g)		
AIRFLOW	1.	2	1.4	4	1.4	6	1.3	8	2.0)
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	862	1.96	907	2.15	950	2.34	992	2.53	1033	2.73
3950	879	2.17	923	2.36	965	2.56	1006	2.76	1045	2.96
4150	897	2.39	939	2.59	980	2.79	1020	3.00	1059	3.21
4350	915	2.63	957	2.84	996	3.05	1035	3.26	1073	3.48
4550	934	2.89	975	3.10	1013	3.32	1051	3.54	1088	3.76
4750	954	3.16	993	3.39	1031	3.61	1068	3.84	1104	4.07
4950	974	3.46	1012	3.69	1049	3.92	1085	4.16	1120	4.39
5150	994	3.78	1032	4.02	1068	4.25	1103	4.50	1137	4.74
5350	1015	4.12	1051	4.36	1087	4.61	1121	4.86	1155	5.11
5550	1036	4.48	1072	4.73	1106	4.99	1140	5.24		
5750	1058	4.86	1092	5.12	_	-	_		_	
5950		_	_		_		_		_	_
6150	_		_	_	_	_	_	_	_	_
6250	_	_	_		_		_	_	_	

Bhp — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.70 for low range motor/drive and 5.25 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 33 — Fan Performance — 48PGF14 Horizontal Units

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	/g)		
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.8	3	1.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	611	1.12	669	1.28	723	1.45	773	1.63	821	1.80
3950	637	1.28	693	1.46	745	1.64	794	1.82	840	2.01
4150	663	1.47	717	1.66	767	1.84	815	2.03	860	2.22
4350	690	1.67	742	1.87	790	2.06	836	2.26	880	2.46
4550	716	1.89	766	2.10	813	2.30	858	2.51	901	2.72
4750	743	2.13	791	2.35	837	2.56	880	2.77	922	2.99
4950	770	2.39	816	2.62	861	2.84	903	3.06	944	3.29
5150	796	2.67	842	2.90	885	3.14	926	3.37	965	3.60
5350	823	2.97	867	3.22	909	3.46	949	3.70	988	3.94
5550	850	3.29	893	3.55	933	3.80	972	4.05	1010	4.30
5750	877	3.64	918	3.90	958	4.16	996	4.42	1033	4.68
5950	904	4.01	944	4.28	983	4.55	1020	4.82	1056	5.09
6150	931	4.41	970	4.69	1008	4.97	1044	5.24		
6250	945	4.61	983	4.90	1020	5.18	_	_		_

			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	/g)		
AIRFLOW (Cfm)	1.	2	1.4	4	1.0	6	1.8	8	2.0)
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
3750	868	1.99	912	2.17	955	2.36	997	2.56	1038	2.76
3950	885	2.19	928	2.39	970	2.58	1011	2.79	1051	2.99
4150	904	2.42	946	2.62	986	2.82	1026	3.03	1065	3.24
4350	923	2.66	963	2.87	1003	3.08	1042	3.30	1079	3.52
4550	942	2.93	982	3.14	1021	3.36	1058	3.58	1095	3.81
4750	962	3.21	1001	3.43	1039	3.66	1075	3.88	1111	4.12
4950	983	3.51	1020	3.74	1057	3.97	1093	4.21	1128	4.45
5150	1004	3.84	1040	4.07	1076	4.31	1111	4.56	1146	4.80
5350	1025	4.18	1061	4.43	1096	4.67	1130	4.92	1164	5.18
5550	1046	4.55	1082	4.80	1116	5.06				
5750	1068	4.94	1103	5.20						
5950	_	_	_	_	_		_	_	_	_
6150		_		_	_	_	_	_	_	
6250		_			_		_		_	

LEGEND

Bhp — Brake Horsepower

High Range Motor/Drive Required

- 1. Motor drive range is 690 to 893 rpm for low range motor/drive and 852 to 1055 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.70 for low range motor/drive and 5.25 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 34 — Fan Performance — 48PGD16 Horizontal Units

AIDELOW			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	rg)		
AIRFLOW (Cfm)	0.	2	0.	4	0.	6	0.	8	1.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	633	1.01	709	1.32	771	1.62	826	1.91	877	2.20
4800	663	1.18	738	1.52	799	1.84	853	2.15	903	2.46
5100	694	1.37	768	1.73	828	2.07	881	2.41	930	2.74
5400	725	1.57	797	1.96	857	2.33	909	2.68	957	3.04
5700	757	1.80	828	2.22	886	2.61	938	2.99	985	3.36
6000	788	2.05	858	2.49	916	2.91	967	3.31	1013	3.71
6300	820	2.33	888	2.79	945	3.24	996	3.66	1042	4.08
6600	852	2.63	919	3.12	975	3.59	1025	4.04	1070	4.48
6900	884	2.95	949	3.47	1005	3.96	1055	4.44	1099	4.90
7200	916	3.31	980	3.85	1036	4.37	1084	4.87	1129	5.36
7500	949	3.69	1011	4.25	1066	4.80	1114	5.33	1158	5.84

AIDELOW			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	rg)		
AIRFLOW (Cfm)	1.3	2	1.	4	1.	6	1.	8	2.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	925	2.50	971	2.80	1015	3.10	1059	3.41	1101	3.73
4800	950	2.77	994	3.09	1037	3.41	1079	3.73	1120	4.06
5100	975	3.07	1019	3.40	1060	3.74	1101	4.08	1140	4.42
5400	1002	3.39	1044	3.74	1085	4.09	1124	4.45	1162	4.81
5700	1029	3.73	1070	4.10	1110	4.47	1148	4.84	1185	5.22
6000	1056	4.10	1097	4.49	1136	4.88	1173	5.27	1210	5.66
6300	1084	4.49	1124	4.90	1162	5.31	1199	5.72	1235	6.13
6600	1112	4.91	1152	5.34	1189	5.77	1226	6.20	1260	6.63
6900	1141	5.36	1180	5.81	1217	6.26	1252	6.71	1287	7.15
7200	1170	5.84	1208	6.31	1245	6.78	1280	7.25	_	
7500	1199	6.35	1237	6.84	1273	7.33	_		_	_

Bhp — Brake Horsepower

Mid-Low Range Motor/Drive Required

High Range Motor/Drive Required

NOTES:

- 1. Motor drive range is 710 to 879 rpm for low range motor/drive and 872 to 1066 rpm for mid-low range motor/drive, and 1066 to 1260 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.70 for low range motor/drive and 5.25 for mid-low range motor/drive and 7.50 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 35 — Fan Performance — 48PGE16 Horizontal Units

AIDELOW			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SURE (in. w	(q)		
AIRFLOW (Cfm)	0.:	2	0.4	4	0.	6	0.	8	1.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	664	1.13	735	1.44	795	1.74	849	2.04	900	2.34
4800	698	1.33	767	1.66	826	1.99	878	2.30	927	2.62
5100	732	1.55	800	1.91	857	2.25	908	2.59	956	2.93
5400	767	1.79	832	2.17	889	2.54	939	2.90	985	3.26
5700	801	2.05	865	2.46	920	2.86	970	3.24	1015	3.61
6000	836	2.35	899	2.78	953	3.20	1001	3.60	1046	4.00
6300	871	2.67	932	3.13	985	3.57	1033	4.00	1077	4.42
6600	906	3.02	966	3.50	1018	3.97	1065	4.42	1108	4.87
6900	941	3.40	1000	3.91	1051	4.40	1097	4.88	1140	5.35
7200	977	3.81	1034	4.35	1084	4.87	1130	5.37	1171	5.86
7500	1012	4.26	1068	4.83	1118	5.37	1162	5.89	1203	6.41

AIDELOW			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	rg)		
AIRFLOW (Cfm)	1.	2	1.	4	1.	6	1.	8	2.	0
(CIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	947	2.64	993	2.95	1038	3.26	1081	3.58	1123	3.90
4800	974	2.94	1018	3.26	1061	3.59	1102	3.92	1143	4.26
5100	1001	3.26	1044	3.60	1086	3.95	1126	4.29	1165	4.65
5400	1029	3.61	1071	3.97	1112	4.33	1151	4.69	1189	5.06
5700	1058	3.99	1099	4.37	1139	4.75	1177	5.13	1214	5.51
6000	1088	4.40	1128	4.79	1166	5.19	1203	5.59	1239	5.99
6300	1118	4.84	1157	5.25	1195	5.67	1231	6.08	1266	6.50
6600	1148	5.31	1187	5.74	1224	6.18	1259	6.61	1294	7.05
6900	1179	5.81	1217	6.26	1253	6.72	1288	7.17	_	_
7200	1211	6.34	1248	6.82	1283	7.30	_	_	_	_
7500	1242	6.91	1279	7.41	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower

Mid-Low Range Motor/Drive Required

High Range Motor/Drive Required

- 1. Motor drive range is 710 to 879 rpm for low range motor/drive and 872 to 1066 rpm for mid-low range motor/drive, and 1066 to 1260 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.70 for low range motor/drive and 5.25 for mid-low range motor/drive and 7.50 for high range motor/drive.
- 3. See page 48 for General Fan Performance Notes.

Table 36 — Fan Performance — 48PGF16 Horizontal Units

			AVA	AILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	/g)		
AIRFLOW	0.	2	0.	0.4		6	0.8		1.0	
(Cfm)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	705	1.31	771	1.62	828	1.92	881	2.23	931	2.54
4800	743	1.54	806	1.87	862	2.20	913	2.53	961	2.85
5100	781	1.80	842	2.16	896	2.51	946	2.85	993	3.20
5400	819	2.09	878	2.47	931	2.84	979	3.21	1025	3.57
5700	857	2.41	915	2.82	966	3.21	1013	3.60	1057	3.98
6000	896	2.76	952	3.19	1002	3.61	1048	4.02	1091	4.43
6300	935	3.15	989	3.60	1038	4.05	1083	4.48	1125	4.91
6600	974	3.57	1027	4.05	1074	4.52	1118	4.97	1159	5.42
6900	1013	4.03	1064	4.54	1111	5.03	1153	5.51	1194	5.98
7200	1052	4.54	1102	5.06	1148	5.58	1189	6.08	1229	6.57
7500	1092	5.08	1140	5.63	1185	6.17	1226	6.69	1264	7.21

			AVA	ILABLE EX	TERNAL ST	ATIC PRES	SSURE (in. w	rg)		
AIRFLOW (Cfm)	1.	2	1.	4	1.	6	1.3	8	2.0	0
(Cilli)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
4500	979	2.85	1024	3.16	1069	3.49	1112	3.82	1154	4.15
4800	1007	3.18	1051	3.51	1094	3.85	1136	4.20	1176	4.55
5100	1037	3.54	1080	3.90	1121	4.25	1161	4.61	1200	4.97
5400	1068	3.94	1109	4.31	1149	4.68	1188	5.06	1226	5.44
5700	1099	4.37	1140	4.76	1178	5.15	1216	5.54	1253	5.94
6000	1132	4.83	1171	5.24	1209	5.65	1245	6.06	1281	6.47
6300	1165	5.33	1203	5.76	1240	6.19	1275	6.61	_	
6600	1198	5.87	1235	6.32	1271	6.76				
6900	1232	6.45	1268	6.91	_		_		_	
7200	1266	7.06	_	_	_		_	_	_	_
7500	_		_	_	_		_	_		_

Bhp — Brake Horsepower

Mid – Low Range Motor/Drive Required

High Range Motor/Drive Required

NOTES:

- 1. Motor drive range is 710 to 879 rpm for low range motor/drive and 872 to 1066 rpm for mid-low range motor/drive, and 1066 to 1260 rpm for high range motor/drive. All other rpms require a field-supplied drive.
- 2. Maximum continuous bhp is 3.70 for low range motor/drive and 5.25 for mid-low range motor/drive and 7.50 for high range motor/drive.
- 3. See below for General Fan Performance Notes.

GENERAL NOTES FOR FAN PERFORMANCE DATA TABLES

- Static pressure losses (i.e., economizer, etc.) must be added to external static pressure before entering Fan Performance table.
- 2. Interpolation is permissible. Do not extrapolate.
- 3. Fan performance is based on wet coils, clean filters, and casing losses. See Accessory/FIOP Static Pressure information in Fig. 30-32.
- 4. Extensive motor and drive testing on these units ensures that the full horsepower range of the motor can be utilized
- with confidence. Using fan motors up to the bhp rating shown will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.
- Use of a field-supplied motor may affect wire size. Recalculate the unit power supply MCA and MOCP if required. Contact Carrier representative for details.
- 6. Use the following formula to calculate input watts: Input Watts = Bhp x (746/Motor Eff)

Table 37 — Operation Air Quantity Limits

UNIT	COOLIN	IG (cfm)	HEATING (cfm)†			
48PG	Min	Max	Min	Max		
08 (Low Heat)	2250	3750	2060	5160		
08 (Med Heat)	2250	3750	2110	6870		
08 (High Heat)	2250	3750	2450	4900		
09 (Low Heat)	2550	4250	2060	5160		
09 (Med Heat)	2550	4250	2110	6870		
09 (High Heat)	2550	4250	2450	4900		
12 (Low Heat)	3000	5000	2110	6870		
12 (Med Heat)	3000	5000	2450	4900		
12 (High Heat)	3000	5000	3150	6300		
14 (Low Heat)	3750	6250	2110	6870		
14 (Med Heat)	3750	6250	2450	4900		
14 (High Heat)	3750	6250	3150	6300		
16 (Low Heat)	4500	7500	3040	6680		
16 (Med Heat)	4500	7500	3870	7750		
16 (High Heat)	4500	7500	4670	8680		

Table 38 — Evaporator Fan Motor Specifications

48PG	DRIVE	VOLTAGE/PHASE	MOTOR P/N	EFFICIENCY	MAX BHP	MAX AMPS
		208/3ph	HD56FE652	0.80	2.4	6.4
		230/3ph	HD56FE652	0.80	2.4	6.4
	Low	460/3ph	HD56FE652	0.80	2.4	3.2
		575/3ph	HD56FE575	0.80	2.4	2.4
80		208/3ph	HD58FE653	0.84	3.1	8.8
	l L	230/3ph	HD58FE653	0.84	3.1	8.8
	High	460/3ph	HD58FE653	0.84	3.1	4.4
		575/3ph	HD58FE576	0.82	3.7	4.2
		208/3ph	HD56FE652	0.80	2.4	6.4
		230/3ph	HD56FE652	0.80	2.4	6.4
	Low	460/3ph	HD56FE652	0.80	2.4	3.2
		575/3ph	HD56FE575	0.80	2.4	2.4
09		208/3ph	HD60FE655	0.83	3.7	11.0
		230/3ph	HD60FE655	0.83	3.7	11.0
	High	460/3ph	HD60FE655	0.83	3.7	5.5
		575/3ph	HD58FE576	0.82	3.7	4.2
		208/3ph	HD58FE653	0.84	3.1	8.8
	Low	230/3ph	HD58FE653	0.84	3.1	8.8
		460/3ph	HD58FE653	0.84	3.1	4.4
		575/3ph	HD58FE576	0.82	3.7	4.2
12	High	208/3ph	HD60FE655	0.83	3.7	11.0
		230/3ph	HD60FE655	0.83	3.7	11.0
		460/3ph	HD60FE655	0.83	3.7	5.5
		575/3ph	HD58FE576	0.82	3.7	4.2
	Low	208/3ph	HD60FE655	0.83	3.7	11.0
		230/3ph	HD60FE655	0.83	3.7	11.0
		460/3ph	HD60FE655	0.83	3.7	5.5
		575/3ph	HD58FE576	0.82	3.7	4.2
14		208/3ph	HD60FK650	0.81	5.25	14.8
		230/3ph	HD60FK650	0.81	5.25	14.8
	High	460/3ph	HD60FK650	0.81	5.25	7.4
		575/3ph	HD60FE575	0.81	5.25	5.9
		208/3ph	HD60FE655	0.83	3.7	11.0
		230/3ph	HD60FE655	0.83	3.7	11.0
	Low	460/3ph	HD60FE655	0.83	3.7	5.5
		575/3ph	HD58FE576	0.83	3.7	4.2
		208/3ph	HD60FK650	0.81	5.25	14.8
		230/3ph	HD60FK650	0.81	5.25	14.8
16	Mid-Low	460/3ph	HD60FK650	0.81	5.25	7.4
		575/3ph	HD60FE575	0.81	5.25	5.9
		208/3ph	HD60FL650	0.89	7.5	19.4
		230/3ph	HD60FL650	0.89	7.5	19.4
	High	460/3ph	HD60FL650	0.89	7.5	9.7
		575/3ph	HD60FL575	0.81	7.5	7.8

Table 39 — Fan Rpm at Motor Pulley Settings*

UNIT	DD11/E	MOTOR PULLEY TURNS OPEN										
48PG	DRIVE	0	1/2	1	1 ¹ / ₂	2	2 ¹ / ₂	3	3 ¹ / ₂	4	4 ¹ / ₂	5
	Low	771	751	731	710	690	670	649	629	609	589	568
08	High	1015	994	974	954	934	913	893	873	852	832	812
	Low	771	751	731	710	690	670	649	629	609	589	568
09	High	1015	994	974	954	934	913	893	873	852	832	812
	Low	893	873	852	832	812	791	771	751	731	710	690
12	High	1055	1035	1015	994	974	954	934	913	893	873	852
	Low	893	873	852	832	812	791	771	751	731	710	690
14	High	1055	1035	1015	994	974	954	934	913	893	873	852
	Low	879	863	846	829	812	795	778	761	744	727	710
16	Mid-Low	1066	1047	1027	1008	988	969	950	930	911	892	872
	High	1260	1240	1221	1202	1182	1163	1144	1124	1105	1085	1066

^{*}Approximate fan rpm shown, based on 1725 rpm motor.

^{1.} Extensive motor and electrical testing ensures that the motors can be utilized with confidence up to the maximum applied bhp, watts, and amps. Using the fan motor up to the maximum ratings shown will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.

^{2.} Convert bhp to watts using the following formula:

watts = motor efficiency

3. The EPACT (Energy Policy Act of 1992) regulates energy requirements for specific types of indoor fan motors. Motors regulated by EPACT include any continuous continuous for the specific types of indoor fan motors. Motors regulated by EPACT include any continuous for the specific types of indoor fan motors. Motors regulated by EPACT include any continuous for the specific types of indoor fan motors. Motors regulated by EPACT include any continuous for the specific types of indoor fan motors. Motors regulated by EPACT include any continuous for the specific types of indoor fan motors. Motors regulated by EPACT include any continuous for the specific types of indoor fan motors. Motors regulated by EPACT include any continuous for the specific types of indoor fan motors. general purpose, T-frame (three-digit, 143 and larger), single-speed, foot mounted, polyphase, squirrel cage induction motors of NEMA (National Electrical Manufacturers Association) design A and B, manu- factured for use in the United States. Ranging from 1 to 200 Hp, these continuous-duty motors operate on 230 and 460 volt, 60 Hz power. If a motor does not fit into these specifications, the motor does not have to be replaced by an EPACT-compliant energyefficient motor. Variable-speed motors are exempt from EPACT compliance requirements. Therefore, the indoor fan motors for Carrier 48PG08-16 units are exempt from these requirements.

SERVICE

WARNING

ELECTRICAL OPERATION HAZARD

Failure to follow this warning could result in personal injury or death.

Before performing service or maintenance operations on unit, always turn off all power to unit. There may be more than 1 disconnect switch.

▲ WARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could result in personal injury or equipment damage.

Puron® (R-410A)refrigerant systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on Puron refrigerant equipment.

A WARNING

FIRE, EXPLOSION HAZARD

Failure to follow this warning could result in personal injury, death and/or property damage.

Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance. What to do if you smell gas:

DO NOT try to light any appliance.

DO NOT touch any electrical switch, or use any phone in your building.

IMMEDIATELY call your gas supplier from a neighbor's phone. Follow the gas supplier's instructions.

If you cannot reach your gas supplier, call the fire department.

WARNING

FIRE, EXPLOSION HAZARD

Failure to follow this warning could result in personal injury or death.

Disconnect gas piping from unit when pressure testing at pressure greater than 0.5 psig. Pressures greater than 0.5 psig will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than 0.5 psig, it *must* be replaced before use. When pressure testing field-supplied gas piping at pressures of 0.5 psig or less, a unit connected to such piping must be isolated by closing the manual gas valve(s).

A WARNING

FIRE, EXPLOSION HAZARD

Failure to follow this warning could result in personal injury, death and/or property damage.

Disconnect gas piping from unit when leak testing at pressure greater than $^{1}/_{2}$ psig. Pressures greater than $^{1}/_{2}$ psig will cause gas valve damage resulting in hazardous condition. If gas valve is subjected to pressure greater than $^{1}/_{2}$ psig, it *must* be replaced before use. When pressure testing field- supplied gas piping at pressures of $^{1}/_{2}$ psig or less, a unit connected to such piping must be isolated by manually closing the gas valve.

Cleaning

Inspect unit interior at beginning of each heating and cooling season and as operating conditions require. Remove unit top panel and/or side panels for access to unit interior.

Coil Maintenance and Cleaning Recommendation

Routine cleaning of coil surfaces is essential to maintain proper operation of the unit. Elimination of contamination and removal of harmful residues will greatly increase the life of the coil and extend the life of the unit. The following maintenance and cleaning procedures are recommended as part of the routine maintenance activities to extend the life of the coil.

Remove Surface Loaded Fibers

Surface loaded fibers or dirt should be removed with a vacuum cleaner. If a vacuum cleaner is not available, a soft non-metallic bristle brush may be used. In either case, the tool should be applied in the direction of the fins. Coil surfaces can be easily damaged (fin edges can be easily bent over and damage to the coating of a protected coil) if the tool is applied across the fins.

NOTE: Use of a water stream, such as a garden hose, against a surface loaded coil will drive the fibers and dirt into the coil. This will make cleaning efforts more difficult. Surface loaded fibers must be completely removed prior to using low velocity clean water rinse.

Periodic Clean Water Rinse

A periodic clean water rinse is very beneficial for coils that are applied in coastal or industrial environments. However, it is very important that the water rinse is made with very low velocity water stream to avoid damaging the fin edges. Monthly cleaning as described below is recommended.

Routine Cleaning of Coil Surfaces

Monthly cleaning with Totaline® environmentally sound coil cleaner is essential to extend the life of coils. This cleaner is available from Carrier Replacement parts division as part number P902-0301 for a one gallon container, and part number P902-0305 for a 5 gallon container. It is recommended that all coils, including standard aluminum, pre-coated, copper/copper or E-coated coils be cleaned with the Totaline environmentally sound coil cleaner as described below. Coil cleaning should be part of the unit's regularly scheduled maintenance procedures to ensure long life of the coil. Failure to clean the coils may result in reduced durability in the environment.

Avoid the use of:

- coil brighteners
- acid cleaning prior to painting
- high pressure washers
- poor quality water for cleaning

Totaline environmentally sound coil cleaner is non-flammable, hypoallergenic, nonbacterial, and a USDA accepted biodegradable agent that will not harm the coil or surrounding components such as electrical wiring, painted metal surfaces, or insulation. Use of non-recommended coil cleaners is strongly discouraged since coil and unit durability could be affected.

Totaline Environmentally Sound Coil Cleaner Application Equipment

- 2¹/₂ gallon garden sprayer
- water rinse with low velocity spray nozzle

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage.

Harsh chemicals, household bleach or acid or basic cleaners should not be used to clean outdoor or indorr coils of any kind. These cleaners can be very difficult to rinse out of the coil and can accelerate corrosion at the fin/tube interface where dissimilar materials are in contact. If there is dirt below the surface of the coil, use the Totaline environmentally sound coil cleaner as described above.

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage.

High velocity water from a pressure washer, garden hose, or compressed air should never be used to clean a coil. The force of the water or air jet will bend the fin edges and increase airside pressure drop. Reduced unit performance or nuisance unit shutdown may occur.

Totaline Environmentally Sound Coil Cleaner Application Instructions

- 1. Proper eye protection such as safety glasses is recommended during mixing and application.
- Remove all surface loaded fibers and dirt with a vacuum cleaner as described above.
- 3. Thoroughly wet finned surfaces with clean water and a low velocity garden hose, being careful not to bend fins.
- 4. Mix Totaline environmentally sound coil cleaner in a $2^{1}/_{2}$ gallon garden sprayer according to the instructions included with the cleaner. The optimum solution temperature is 100° F.

NOTE: Do NOT USE water in excess of 130°F, as the enzymatic activity will be destroyed.

- Thoroughly apply Totaline® environmentally sound coil cleaner solution to all coil surfaces including finned area, tube sheets and coil headers.
- Hold garden sprayer nozzle close to finned areas and apply cleaner with a vertical, up-and-down motion. Avoid spraying in horizontal pattern to minimize potential for fin damage.
- 7. Ensure cleaner thoroughly penetrates deep into finned areas.

- Interior and exterior finned areas must be thoroughly cleaned.
- 9. Finned surfaces should remain wet with cleaning solution for 10 minutes.
- Ensure surfaces are not allowed to dry before rinsing. Reapplying cleaner as needed to ensure 10-minute saturation is achieved.
- 11. Thoroughly rinse all surfaces with low velocity clean water using downward rinsing motion of water spray nozzle. Protect fins from damage from the spray nozzle.

Condensate Drain Pan

Check and clean each year at the start of the cooling season.

To clean the condensate pan:

- Disconnect condensate drain system from side or bottom drain connection.
- 2. Remove and clean trap.
- 3. Remove 4 screws securing condensate pan access cover to unit. Save screws and panel.
- Slide condensate pan out from unit and clean. Pan is made of non-corrosive plastic. Use a mild cleaner to remove heavy deposits of dirt and grime.
- 5. Replace pan in unit.
- Replace condensate pan access cover with 4 screws saved from Step 3.
- 7. Re-attach and prime condensate trap.
- 8. Connect condensate drainage system.

NOTE: During winter in low (subfreezing) temperature regions, add antifreeze solutions to the drain. Protect against contact with children, pets and animals.

Filters

Clean or replace at start of each heating and cooling season, or more often if operating conditions require. Refer to Tables 1 and 2 for type and size.

Outdoor-Air Inlet Screens

Clean screens with steam or hot water and a mild detergent.

Main Burner

At the beginning of each heating season, inspect for deterioration or blockage due to corrosion or other causes. Observe the main burner flames. Refer to Main Burners section.

Flue Gas Passageways

The flue collector box and heat exchanger cells may be inspected by opening heat section access door (Fig. 10), flue box cover, and main burner assembly (Fig. 33). Refer to Main Burners section on page 56 for burner removal sequence. If cleaning is required, clean tubes with a wire brush.

Combustion-Air Blower

Clean periodically to assure proper airflow and heating efficiency. Inspect blower wheel every fall and periodically during heating season. For the first heating season, inspect blower wheel bi-monthly to determine proper cleaning frequency.

To inspect blower wheel, open heat section door. Using a flashlight, look into the flue exhaust duct to inspect. If cleaning is required, remove motor and wheel assembly by removing the screws holding the flue box cover to the flue box. See Fig. 33. Remove the screws holding the inducer housing to the inlet plate. The wheel can then be removed from the motor shaft and cleaned with a detergent or solvent. Replace the wheel onto the motor shaft in the correct position and reassemble the flue cover onto the flue box.

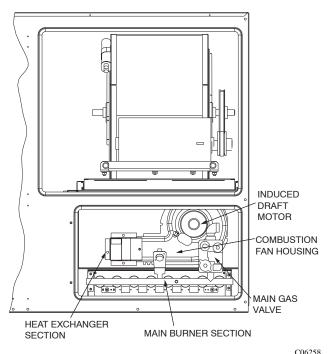


Fig. 34 – Typical Gas Heating Section (Sizes 08-14 Shown)

Lubrication

Compressors

Each compressor is charged with the correct amount of oil at the factory.

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage.

The compressor is in a Puron® refrigerant system and uses a polyolester (POE) oil. This oil is extremely hygroscopic, meaning it absorbs water readily. POE oils can absorb 15 times as much water as other oils designed for HCFC and CFC refrigerants. Avoid exposure of the oil to the atmosphere. Damage to components could result.

Polyolester (POE) compressor lubricants are known to cause long term damage to some synthetic roofing materials. Exposure, even if immediately cleaned up, may cause roofing materials to become brittle (leading to cracking) within a year. When performing any service which may risk exposure of compressor oil to the roof, take appropriate precautions to protect roofing. Procedures which risk oil leakage include compressor replacement, repairing refrigerant leaks, and replacing refrigerant components. To prepare rooftop:

- 1. Cover extended roof work area with an impermeable plastic dropcloth or tarp. Make sure a 10 x 10 ft area around the work area is covered.
- Cover area in front of the unit service panel with a terry cloth shop towel to absorb lubricant spills and prevent run-offs. Towel will also protect dropcloth from tears caused by tools or components.
- Place terry cloth shop towel inside the unit directly under components to be serviced to prevent spills through the bottom of the unit.
- 4. Perform the required service.
- Remove an dispose of any oil contaminated material per local codes.

Indoor Fan Shaft Bearings

The indoor fan has permanently sealed bearings. No field lubrication is necessary.

Indoor Fan Shaft Bearings (Size 16)

Lubricate bearings at least every 6 months with suitable bearing grease. Typical lubricants are given below:

MANUFACTURER	LUBRICANT
Texaco	Regal AFB-2*
Mobil	Mobilplex EP No. 1
Sunoco	Prestige 42
Texaco	Multifak 2

^{*}Preferred lubricant because it contains rust and oxidation inhibitors.

Condenser and Evaporator-Fan Motor Bearings

The condenser-fan and evaporator-fan motors have permanently sealed bearings, so no field lubrication is necessary.

Evaporator Fan Service and Replacement

The 48PG units feature a slide-out fan deck for easy servicing of the indoor-fan motor, pulleys, belt, and bearings. To service components in this section, perform the following procedure:

- 1. Turn off unit power.
- 2. Open the fan section access door.
- 3. Remove two no. 10 screws at front of slide-out fan deck. Save screws. (See Fig. 35.)
- 4. Disconnect the electrical wires connected to the slide-out fan deck (supply air thermistor and fan status switch if installed). Wires may be damaged if not disconnected.
- Fan deck can now be slid out to access serviceable components.

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damge.

DO NOT SLIDE FAN DECK OUT PAST THE FAN DECK STOP. If further access is required, the fan deck must be supported. Make sure plugs and wiring are not pinched between fan housing and unit sheet metal post.

- To replace fan deck to operating position, slide fan deck back into the unit. Secure with the two no. 10 screws removed in Step 3.
- 7. Re-attach electrical wires.
- 8. Close fan section access door.
- 9. Restore power to unit.

Evaporator Fan Performance Adjustment (Fig. 35 and 36)

Fan motor pulleys are factory set for speed shown in Table 39. To change fan speeds:

- 1. Shut off unit power supply.
- Loosen nuts on the 4 carriage bolts in the mounting base. Using adjusting bolts and plate, slide motor and remove belt.
- 3. Loosen movable-pulley flange setscrew. (See Fig. 36.)
- 4. Screw movable flange toward fixed flange to increase speed and away from fixed flange to decrease speed. Increasing fan speed increases load on motor. Do not exceed maximum speed specified in Table 39. See Table 37 for air quantity limits.
- Set movable flange at nearest keyway of pulley hub and tighten setscrew. (See Table 39 for speed change for each full turn of pulley flange.)

- 6. Replace belts.
- 7. Realign fan and motor pulleys:
 - a. Loosen fan pulley setscrews.
 - b. Slide fan pulley along fan shaft.
 - Make angular alignment by loosening motor from mounting plate.
- 8. Tighten belts.
- 9. Restore power to unit.

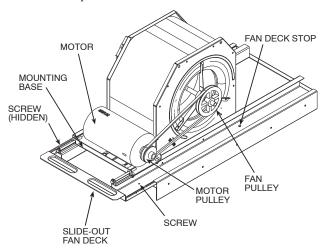


Fig. 35 - Evaporator-Fan Motor Adjustment (Sizes 08-14 Shown)

C06177

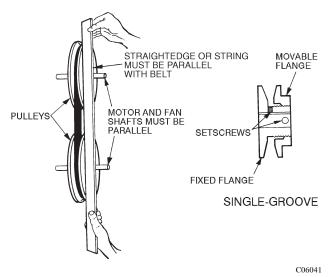


Fig. 36 - Evaporator-Fan Alignment and Adjustment

Evaporator Fan Belt Tension Adjustment

To adjust belt tension:

- 1. Turn off unit power.
- 2. Slide out fan deck to service position as shown in Evaporator Fan Service and Replacement section above.
- 3. Loosen motor mounting plate bolts.
- 4. Move motor mounting plate to adjust to proper belt tension. Motor adjuster bolts may be used to tighten belts. (See Fig. 30.) **Do not overtighten belt.**
- 5. Check for proper belt alignment. Adjust if necessary.
- 6. Tighten motor mounting plate bolts to lock motor in proper position.
- 7. Return fan deck back into operating position.

8. Restore power to unit.Condenser-Fan Adjustment (Fig. 37)

Condenser Fan Adjustment

- 1. Shut off unit power supply.
- 2. Remove condenser-fan assembly (grille, motor, motor cover, and fan) and loosen fan hub setscrews.
- 3. Adjust fan height as shown in Fig. 37.
- 4. Tighten setscrews and replace condenser-fan assembly.
- 5. Turn on power to unit.

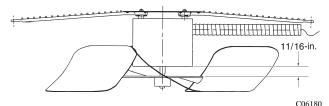


Fig. 37 - Evaporator-Fan Alignment and Adjustment

Verify Sensor Performance

Using an ohmmeter and a thermometer, compare measured temperature to the resistance shown in Table 40.

Table 40 — Sensor Temperature/Resistance Values

TEMPERATURE (F)	RESISTANCE (ohms)
-58	200.250
-40	100,680
-22	53,010
-4	29.091
14	16,590
32	9,795
50	5.970
68	3,747
77	3,000
86	2.416
104	1,597
122	1,080
140	746
158	525
176	376
185	321
194	274
212	203
230	153
248	116
257	102
266	89
284	70
302	55

Economizer Operation During Power Failure

Dampers have a spring return. In event of power failure, dampers will return to fully closed position until power is restored. *Do not manually operate damper motor*.

Evacuation

Proper evacuation of the system will remove noncondensables and ensure a tight, dry system before charging. Evacuate from both high and low side ports. Never use the system compressor as a vacuum pump. Refrigerant tubes and indoor coil should be evacuated to 500 microns. Always break a vacuum with dry nitrogen. The two possible methods are the deep vacuum method and the triple evacuation method.

Deep Vacuum Method

The deep vacuum method requires a vacuum pump capable of pulling a minimum vacuum of 500 microns and a vacuum gauge capable of accurately measuring this vacuum depth. The deep vacuum method is the most positive way of assuring a system is free of air and liquid water. (See Fig. 38.)

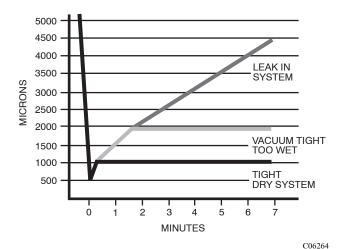


Fig. 38 - Deep Vacuum Graph

Triple Evacuation Method

The triple evacuation method should only be used when vacuum pump is capable of pumping down to 28 in. of mercury and system does not contain any liquid water. Proceed as follows:

- 1. Pump system down to 28 in. of mercury and allow pump to continue operating for an additional 15 minutes.
- 2. Close service valves and shut off vacuum pump.
- 3. Connect a nitrogen cylinder and regulator to system and open until system pressure is 2 psig.
- 4. Close service valve and allow system to stand for 1 hr. During this time, dry nitrogen will be able to diffuse throughout the system, absorbing moisture.
- 5. Repeat this procedure. System will then contain minimal amounts of contaminants and water vapor.

Refrigerant Charge

Amount of refrigerant charge is listed on unit nameplate. Refer to Carrier GTAC II; Module 5; Charging, Recovery, Recycling, and Reclamation section for charging methods and procedures. Unit panels must be in place when unit is operating during charging procedure.

Puron® (R-410A) refrigerant cylinders contain a dip tube which allows liquid refrigerant to flow from the cylinder in an upright position. Charge units with cylinder in the upright position and a commercial type metering device in the manifold hose.

WARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could result in personal injury or equipment damage.

This system uses Puron® refrigerant which has higher pressures than standard R-22 and other refrigerants. No other refrigerant may be used in this system. Gauge set, hoses and recovery system must be designed to handle refrigerant. If unsure about equipment, consult the equipment manufacturer.

NOTE: Do not use recycled refrigerant as it may contain contaminants.

No Charge

Use standard evacuating techniques. After evacuating system, weigh in the specified amount of refrigerant (refer to unit nameplate).

Low Charge Cooling

Using cooling charging chart (see Fig. 39-42), add or remove refrigerant until conditions of the chart are met. An accurate pressure gauge and temperature-sensing device is required. Charging is accomplished by ensuring the proper amount of liquid subcooling. Connect pressure gauge to the compressor discharge service valve. Connect temperature sensing device to the liquid line between the condenser and the TXV (thermostatic expansion valve) and insulate it so that ambient temperature does not affect reading.

To Use The Cooling Charging Chart

Use the above temperature and pressure readings, and find the intersection point on the cooling charging chart. If intersection point on chart is above line, add refrigerant. If intersection point on chart is below line, carefully recover some of the charge. Recheck suction pressure as charge is adjusted.

NOTE: Indoor-air cfm must be within normal operating range of unit. All outdoor fans must be operating.

The TXV is set to maintain between 10 and 15° of superheat at the compressors. The valves are factory set and cannot be adjusted. Do not use a TXV designed for use with R-22 refrigerant.

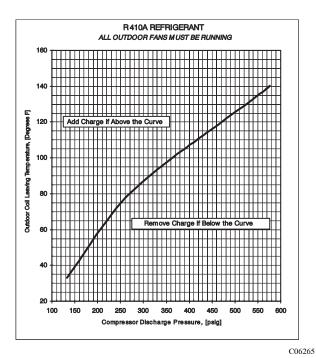


Fig. 39 - Charging Chart — 48PG08 and 09

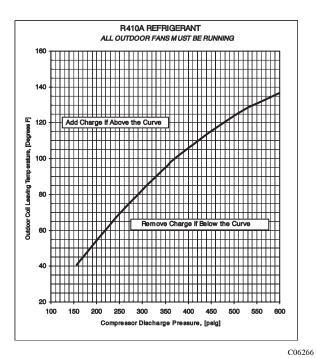


Fig. 40 - Charging Chart — 48PG12

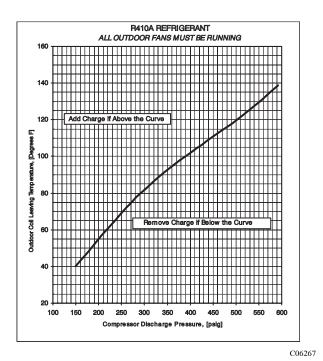


Fig. 41 - Charging Chart — 48PG14

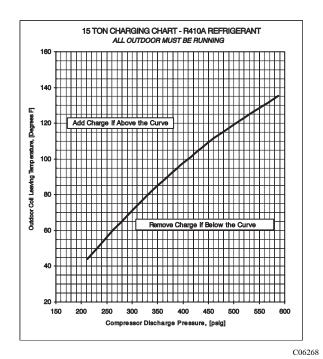


Fig. 42 - Charging Chart — 48PG16

Puron® Refrigerant

Puron® refrigerant operates at 50 to 70% higher pressures than R-22. Be sure that servicing equipment and replacement components are designed to operate with Puron refrigerant. Do not mix with components that have been used with other refrigerants. Puron® refrigerant, as with other HFCs, is only compatible with POE oils.

Recovery cylinder service pressure rating must be 400 psig. Puron® refrigerant systems should be charged with liquid refrigerant. Use a commercial-type metering device in the manifold hose. Manifold sets should be 750 psig high-side and 200 psig low-side with 520 psig low-side retard. Use hoses with 750 psig service pressure rating. Leak detectors should be designed to detect HFC refrigerant.

Gas Valve Adjustment

The gas valve opens and closes in response to the thermostat or limit control.

When power is supplied to valve terminals W2 (High Fire) and C1, the main valve opens to its preset position.

The regular factory setting is stamped on the valve body.

To adjust regulator:

- 1. Set unit at setting for no call for heat.
- 2. Turn main gas valve to OFF position.
- Remove ¹/₈-in. pipe plug from manifold pressure tap connection. Install a suitable pressure-measuring device.
- 4. Set main gas valve to ON position.
- 5. Set thermostat at setting to call for heat.
- 6. Remove screw cap covering regulator adjustment screw. (See Fig. 43.)
- 7. Turn adjustment screw clockwise to increase pressure or counterclockwise to decrease pressure. The setting is 3.50 in. wg on sizes 08-14 and 3.00 in. wg on size 16.
- 8. Once desired pressure is established, set unit setting for no call for heat, turn off main gas valve, remove pressure-measuring device, and replace ¹/₈-in. pipe plug and screw cap.

High Altitude

For high altitude applications greater than 2,000 ft the heat input rate should be reduced. The higher the altitude is above sea level, the less oxygen is in the air. See Table 41 for orifice sizing. A high altitude kit is available to convert unit for altitudes up to 7,000 ft

LP (Liquid Propane) Gas Use

Base units are equipped with orifice sizes selected for Natural Gas use at elevations below 2000 ft. If LP fuel will be used, change the orifices according to Table 41 data. Manifold pressure is NOT changed when using LP fuel. Check per Start-Up section.

Main Burners

For all applications, main burners are factory set and should require no adjustment.

Main Burner Removal

- 1. Shut off (field-supplied) manual main gas valve.
- 2. Shut off power to unit.
- 3. Open gas section access door.
- 4. Disconnect gas piping from gas valve inlet.
- 5. Remove wires from gas valve.
- 6. Remove wires from rollout switch.
- 7. Remove sensor wire and ignitor cable from IGC board.
- 8. Remove 2 screws that hold the burner assembly to vestibule plate.

Rotate the burner/manifold assembly to the right, away from the flue extension and lift burner/manifold assembly out of unit.

Cleaning and Adjustment

- 1. Remove burner rack from unit as described in Main Burner Removal section above.
- 2. Inspect burners, and if dirty, remove burners from rack. The two outer burners have the flame crossover closed off in order to prevent gas flow from exiting the sides of the burner assembly. To prevent ignition problems, make sure the outer burners are returned to their original position when done servicing.
- Using a soft brush, clean burners and crossover port as required.
- 4. Adjust spark gap. (See Fig. 43.)
- 5. Reinstall burners on rack.
- 6. Reinstall burner rack as described above.

Filter Drier

Replace whenever refrigerant system is exposed to atmosphere. Only use factory specified liquid-line filter driers with working pressures no less than 650 psig. Do not install a suction-line filter drier in liquid line. A liquid-line filter drier designed for use with Puron refrigerant is required on every unit.

Table 41 — Altitude Compensation* 48PG08-14

ELEVATION (ft)	NATURAL GAS ORIFICE†	LP ORIFICE†
0-1,999	43	50
2,000	44	51
3,000	44	51
4,000	44	51
5,000	45	51
6,000	45	52
7,000	47	52
8,000	47	52
9,000	47	53
10,000	48	53
11,000	49	53
12,000	50	54
13,000	50	54
14,000	51	55

48PG16

ELEVATION (ft)	NATURAL GAS ORIFICE†	LP ORIFICE†
0-1,999	30	38
2,000	30	40
3,000	31	40
4,000	31	41
5,000	31	41
6,000	31	42
7,000	32	42
8,000	32	43
9,000	32	43
10,000	35	44
11,000	36	44
12,000	37	45
13,000	38	46
14,000	39	47

LEGEND

LP — Liquid Propane

- * As the height above sea level increases, there is less oxygen per cubic foot of air. Therefore, heat input rate should be reduced at higher altitudes. Includes a 4% input reduction per each 1000 ft.
- † Orifices available through the local Carrier dealer.

Protective Devices

Compressor Protection

High-Pressure Switch

If the high-pressure switch opens, the compressor will shut down and the compressor lockout (CLO) device will energize to block further compressor operation. The high-pressure switch will reset automatically as the refrigerant pressure drops below its reset level. The CLO will remain energized until manually reset.

Low-Pressure Switch

If the low-pressure switch opens, the compressor will shut down and the compressor lockout (CLO) device will energize to block further compressor operation. The low-pressure switch will reset automatically as the refrigerant pressure rises above its reset level. The CLO will remain energized until manually reset.

Freeze Protection Switch

This switch is installed on each evaporator coil section to provide protection against continued unit operation with a frosted evaporator surface. If the freeze protection switch opens, the compressor on this circuit will shut down and the compressor lockout (CLO) device will energize to block further compressor operation. The freeze protection switch will reset as the evaporator tube temperature rises above its reset level. The CLO will remain energized until manually reset.

Compressor Lockout (CLO) Device

The CLO prevents automatic recycling of the compressor as safety controls reset. If the high-pressure switch, low-pressure switch or freeze protection switch opens, the CLO device will energize to block further compressor operation. To reset the CLO (after all safety switches have reset), either open the thermostat to remove the cooling demand signal (and then re-close) or cycle the control power in the unit.

Overcurrent

Each compressor has internal line break motor protection.

Overtemperature —

Each compressor has an internal protector to protect it against excessively high discharge gas temperatures.

Evaporator Fan Motor Protection

Indoor-fan motors less than 5 hp are equipped with internal overcurrent and overtemperature protection. Protection devices reset automatically. Do not bypass protective devices to correct problem. Disconnect and lock out power when servicing motor.

Indoor- fan motors 5 hp and larger are equipped with a manual reset, calibrated trip, magnetic circuit breaker and overcurrent protection. Do not bypass connections or increase the size of the breaker to correct trouble. Determine the cause and correct it before resetting the breaker.

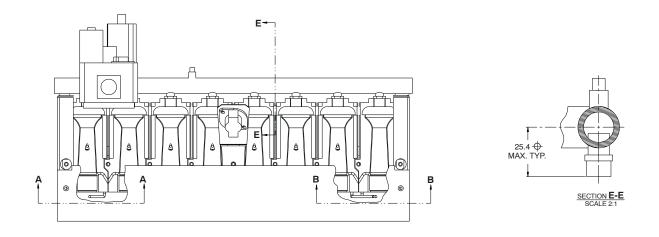
Condenser-Fan Motor Protection

Each condenser-fan motor is internally protected against overtemperature.

Relief Devices

All units have relief devices to protect against damage from excessive pressures (i.e., fire). These devices protect the high and low side and are located at the suction line service port. Protect joint during brazing operations near joint.

Control Circuit, 24-V


Each control circuit is protected against overcurrent by a 3.2 amp circuit breaker. Breaker can be reset. If it trips, determine cause of trouble before resetting. See Fig. 43 and 44.

Replacement Parts

A complete list of replacement parts may be obtained from any Carrier distributor upon request.

Diagnostic LEDs

The IGC control board has a LED for diagnostic purposes.

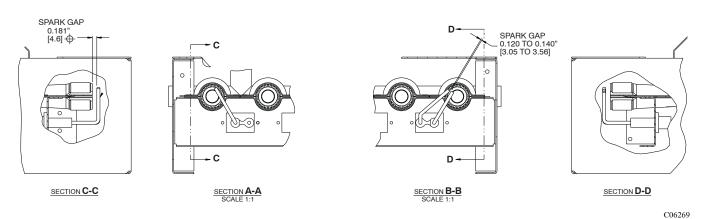


Fig. 43 - Spark Gap Adjustment

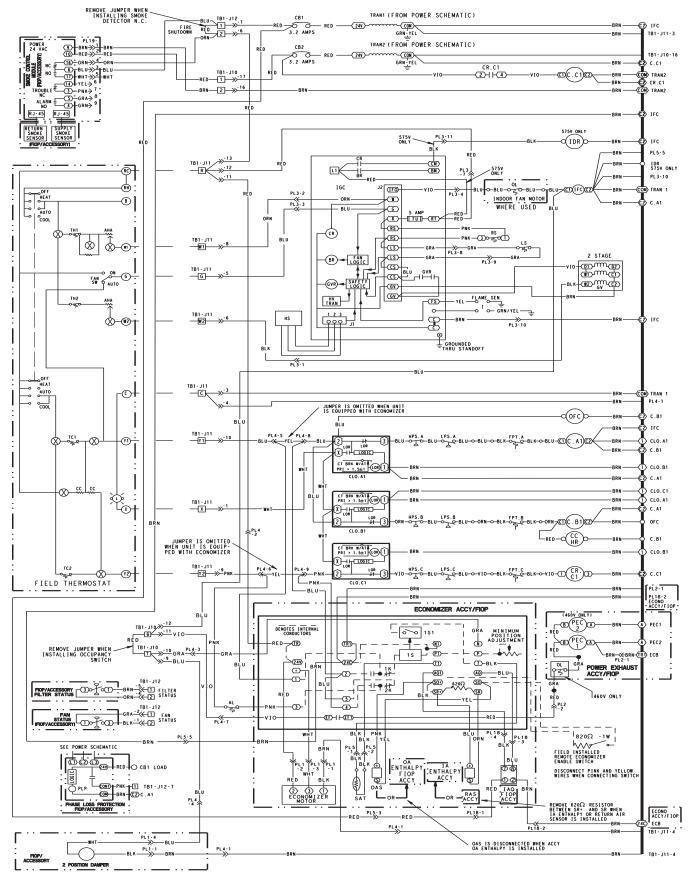


Fig. 44 - Typical Low Voltage Control Schematic

C06270

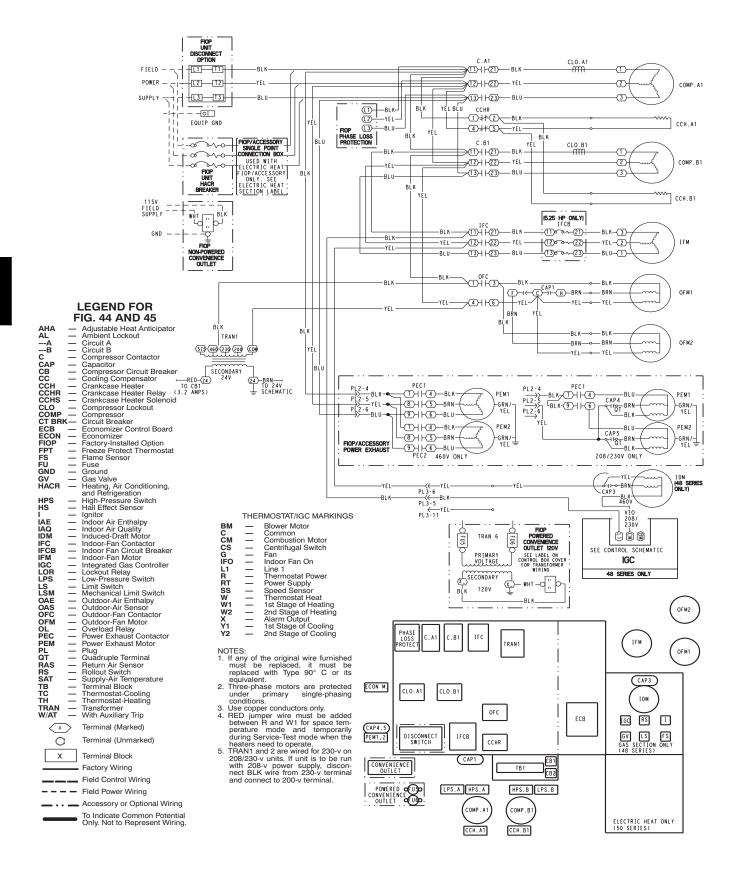


Fig. 45 - Typical Power Schematic

C06271

TROUBLESHOOTING

Unit Troubleshooting

See Table 42 for unit cooling troubleshooting. See Tables 43 and 44 for unit heating troubleshooting.

Table 42 — Cooling Service Analysis

Power failure. Fuse blown or circuit breaker tripped. Replace fuse or reset circuit breaker.	PROBLEM	CAUSE	REMEDY
Defective thermostat, contactor, transform- er, or control relay. Insufficient line voltage. Determine cause and correct. Insufficient line voltage. Determine cause and correct. Incorrect or faulty wiring. Check wiring diagram and rewire correctly. Thermostat setting too high. Lower thermostat setting below room temperature.		Power failure.	Call power company.
Compressor and Condenser Fan Will Not Start. Insufficient line voltage. Determine cause and correct.		Fuse blown or circuit breaker tripped.	Replace fuse or reset circuit breaker.
Insufficient line voltage. Determine cause and correct. Incorrect or faulty wiring. Check wiring diagram and rewire correctly. Thermostat setting too high. Lower thermostat setting below room temperature compressor circuit. Faulty wiring or loose connections in compressor circuit. Check wiring and repair or replace. Compressor Will Not Start But Condenser Fan Runs. Faulty wiring or loose connections in compressor. Check wiring and repair or replace. Compressor motor burned out, seized, or internal overload open. Defective run/start capacitor, overload, start relay. Defective run/start capacitor, overload, start relay. Determine cause and replace. Replace fuse or reset circuit breaker. Determine cause. Recover refrigerant, evacuate system, and recharge to nameplate. Defective compressor. Replace and determine cause and correct. Insufficient line voltage. Determine cause and correct. Defective run/start capacitor, overload, or Determine cause and correct. Defective termostat). Pefective termostat. Defective cause and correct. Defective termostat. Replace thermostat. Replace intermostat. Replace thermostat. Replace intermostat. Replace thermostat. Locate restriction and remove. Dirty air filter. Replace filter. Defective thermostat set too low. Reset thermostat. Low refrigerant charge. Locate leak, repair, and recharge. Leaking valves in compressor. Replace compressor. Air in system. Replace compressor. Replace or refrigerant, evacuate system, and recharge. Charge. Charge. Clean coil or remove restriction. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Recover refrigerant, evacuate sys			Replace component.
Thermostat setting too high. Faulty wiring or loose connections in compressor circuit. Compressor or will Not Start But Condenser Fan Runs. Defective run/start capacitor, overload, start relay. One leg of 3-phase power dead. Replace fuse or reset circuit breaker. Determine cause and replace. Compressor Cycles (Other Than Normally Satisfying Thermostat). Pofective run/start capacitor, overload, start relay. Refrigerant overcharge or undercharge. Replace fuse or reset circuit breaker. Determine cause. Replace and determine cause. Insufficient line voltage. Determine cause and correct. Blocked condenser. Determine cause and correct. Defective run/start capacitor, overload, or start relay. Defective thermostat. Faulty condenser-fan motor or capacitor. Replace thermostat. Faulty condenser-fan motor or capacitor. Replace. Replace filter. Dirty air filter. Replace filter. Unit undersized for load. Decrease load or increase unit size. Thermostat set too low. Reset thermostat. Loade leak, repair, and recharge. Locate leak, repair, and recharge. Leaking valves in compressor. Air in system. Poirty air filter. Poirty condenser coil dirty or restricted. Condenser acil dirty or restricted. Replace filter. Pity condenser coil. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Condenser acil dirty or restricted. Recover refrigerant, evacuate system, and recharge. Locate leak, repair, and rectarge. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Condenser acil dirty or restricted or air short-cycling. Determine cause and correct.	NOI Start.	Insufficient line voltage.	Determine cause and correct.
Faulty wiring or loose connections in compressor circuit.		Incorrect or faulty wiring.	Check wiring diagram and rewire correctly.
Compressor Will Not Start But Condenser Fan Runs. Compressor motor burned out, seized, or internal overload open.		Thermostat setting too high.	Lower thermostat setting below room temperature.
internal overload open. Defective run/start capacitor, overload, start relay. One leg of 3-phase power dead. Replace fuse or reset circuit breaker. Determine cause. Refrigerant overcharge or undercharge. Refrigerant, evacuate system, and recharge to nameplate. Defective compressor. Replace and determine cause. Insufficient line voltage. Determine cause and correct. Blocked condenser. Determine cause and correct. Blocked condenser. Determine cause and correct. Determine cause and correct. Determine cause and correct. Perfoctive run/start capacitor, overload, or start relay. Determine cause and replace. Replace and determine cause and correct. Determine cause and correct. Determine cause and correct. Determine cause and correct. Determine cause and replace. Replace thermostat. Replace thermostat. Replace thermostat. Replace filter. Unit undersized for load. Unerease load or increase unit size. Thermostat set too low. Reset thermostat. Low refrigerant charge. Locate leak, repair, and recharge. Leaking valves in compressor. Replace compressor. Replace compressor. Replace are thermostat. Condenser coil dirty or restricted. Clean coil or remove restriction. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Recover refrigerant, evacuate system, and recharge. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Recover refrigerant, evacuate system, and recharge. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Recover refrigerant, evacuate system, and recharge. Recover refrigerant, evacuate system, and recharge. Dirty condenser air restricted or air short-cycl- ing. Determine cause and replace.		Faulty wiring or loose connections in compressor circuit.	Check wiring and repair or replace.
relay. One leg of 3-phase power dead. Replace fuse or reset circuit breaker. Determine cause. Refrigerant overcharge or undercharge. Defective compressor. Insufficient line voltage. Determine cause and correct. Blocked condenser. Defective run/start capacitor, overload, or start relay. Defective thermostat. Replace and determine cause. Determine cause and correct. Defective run/start capacitor, overload, or start relay. Defective thermostat. Replace thermostat. Replace thermostat. Faulty condenser-fan motor or capacitor. Restriction in refrigerant system. Dirty air filter. Unit undersized for load. Decrease load or increase unit size. Thermostat set too low. Reset thermostat. Low refrigerant charge. Locate leak, repair, and recharge. Leaking valves in compressor. Replace compressor. Air in system. Dirty air filter. Replace or refrigerant, evacuate system, and recharge. Condenser coil dirty or restricted. Clean coil or remove restriction. Refrigerant overcharged. Recover excess refrigerant. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Condenser coil. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Condenser air restricted or air short-cycling. Determine cause. Recover refrigerant, evacuate system, and recharge. Condenser air restricted or air short-cycling.	Compressor Will Not Start	internal overload open.	Determine cause. Replace compressor.
Refrigerant overcharge or undercharge. Defective compressor. Insufficient line voltage. Defective run/start capacitor, overload, or start relay. Defective thermostat. Replace and determine cause. Insufficient line voltage. Determine cause and correct. Blocked condenser. Determine cause and correct. Defective run/start capacitor, overload, or start relay. Defective thermostat. Replace thermostat. Faulty condenser-fan motor or capacitor. Restriction in refrigerant system. Dirty air filter. Unit undersized for load. Decrease load or increase unit size. Thermostat set too low. Reset thermostat. Locate leak, repair, and recharge. Leaking valves in compressor. Replace compressor. Air in system. Condenser coil dirty or restricted. Dirty air filter. Dirty air filter. Replace compressor. Recover refrigerant, evacuate system, and recharge. Condenser coil dirty or restricted. Clean coil or remove restriction. Privy condenser coil. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Condenser air restricted or air short-cycling. Determine cause and correct.			Determine cause and replace.
Compressor Cycles (Other Than Normally Satisfying Thermostat). Defective thermostat. Defective thermostat. Defective thermostat. Faulty condenser-fan motor or capacitor. Restriction in refrigerant system. Dirty air filter. Unit undersized for load. Thermostat set too low. Leaking valves in compressor. Air in system. Condenser coil dirty or restricted. Dirty air filter. Dirty air filter. Dirty air filter. Condenser coil dirty or restricted. Dirty air filter. Dirty condenser coil. Replace filter. Dirty condenser coil. Replace compressor. Replace pair, and recharge. Locate leak, repair, and recharge. Locate leak repair, and recharge. Replace filter. Dirty condenser coil dirty or restricted. Clean coil or remove restriction. Refrigerant overcharged. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Air in system. Condenser air restricted or air short-cycling. Determine cause and correct.		One leg of 3-phase power dead.	
Insufficient line voltage. Determine cause and correct.		Refrigerant overcharge or undercharge.	Recover refrigerant, evacuate system, and recharge to nameplate.
Blocked condenser. Determine cause and correct.		Defective compressor.	Replace and determine cause.
Defective run/start capacitor, overload, or start relay. Defective thermostat. Faulty condenser-fan motor or capacitor. Restriction in refrigerant system. Dirty air filter. Condenser Condenser Coll dirty or restricted. Excessive Head Pressure. Defective thermostat. Faulty condenser-fan motor or capacitor. Replace thermostat. Replace. Replace filter. Unit undersized for load. Decrease load or increase unit size. Thermostat set too low. Reset thermostat. Locate leak, repair, and recharge. Leaking valves in compressor. Replace compressor. Replace compressor. Recover refrigerant, evacuate system, and recharge. Condenser coil dirty or restricted. Clean coil or remove restriction. Dirty condenser coil. Refrigerant overcharged. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Condenser air restricted or air short-cycling. Determine cause and correct.		Insufficient line voltage.	Determine cause and correct.
Defective run/start capacitor, overload, or start relay. Defective thermostat. Faulty condenser-fan motor or capacitor. Resplace. Resplace. Replace thermostat. Faulty condenser-fan motor or capacitor. Resplace. Replace filter. Dirty air filter. Unit undersized for load. Thermostat set too low. Locate restriction and remove. Thermostat set too low. Reset thermostat. Low refrigerant charge. Locate leak, repair, and recharge. Leaking valves in compressor. Replace compressor. Air in system. Recover refrigerant, evacuate system, and recharge. Condenser coil dirty or restricted. Clean coil or remove restriction. Dirty air filter. Dirty condenser coil. Refrigerant overcharged. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Recover refrigerant, evacuate system, and recharge. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Dirty condenser air restricted or air short-cycling. Determine cause and correct.	Compressor Cycles (Other Than Nor-	Blocked condenser.	Determine cause and correct.
Faulty condenser-fan motor or capacitor. Restriction in refrigerant system. Dirty air filter. Unit undersized for load. Thermostat set too low. Leaking valves in compressor. Air in system. Dirty air filter. Condenser coil dirty or restricted. Dirty air restricted or air short-cycling. Excessive Head Pressure. Faulty condenser-fan motor or capacitor. Replace. Locate restriction and remove. Replace filter. Dirty air filter. Dirty condenser coil. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Clean coil. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Clean coil. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Dirty condenser coil. Refrigerant overcharged. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Dirty condenser air restricted or air short-cycling. Determine cause and correct.	mally Satisfying Thermostat).		Determine cause and replace.
Restriction in refrigerant system. Dirty air filter. Unit undersized for load. Thermostat set too low. Locate leak, repair, and recharge. Locate leak, repair, and recharge. Leaking valves in compressor. Air in system. Condenser coil dirty or restricted. Dirty condenser coil. Replace filter. Locate leak, repair, and recharge. Condenser coil dirty or restricted. Clean coil or remove restriction. Dirty air filter. Dirty condenser coil. Replace filter. Dirty condenser coil. Recover excess refrigerant. Air in system. Condenser air restricted or air short-cycling. Determine cause and correct.		Defective thermostat.	Replace thermostat.
Dirty air filter. Unit undersized for load. Thermostat set too low. Low refrigerant charge. Leaking valves in compressor. Air in system. Condenser coil dirty or restricted. Dirty condenser coil. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Clean coil. Refrigerant overcharged. Recover excess refrigerant. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Clean coil. Refrigerant overcharged. Recover excess refrigerant. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Clean coil. Refrigerant overcharged. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Condenser air restricted or air short-cycling.		Faulty condenser-fan motor or capacitor.	Replace.
Unit undersized for load. Thermostat set too low. Low refrigerant charge. Leaking valves in compressor. Air in system. Condenser coil dirty or restricted. Dirty condenser coil. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Clean coil. Replace filter. Dirty condenser coil. Refrigerant overcharged. Recover excess refrigerant. Recover excess refrigerant. Recover excess refrigerant. Recover refrigerant. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Condenser air restricted or air short-cycling.		Restriction in refrigerant system.	Locate restriction and remove.
Thermostat set too low. Low refrigerant charge. Leaking valves in compressor. Air in system. Condenser coil dirty or restricted. Dirty air filter. Dirty condenser coil. Refrigerant overcharged. Recover excess refrigerant. Clean coil. Recover excess refrigerant. Recover excess refrigerant. Clean coil. Recover excess refrigerant. Clean coil. Recover excess refrigerant. Clean coil. Recover excess refrigerant. Condenser air restricted or air short-cycling.		Dirty air filter.	Replace filter.
Low refrigerant charge. Locate leak, repair, and recharge.		Unit undersized for load.	Decrease load or increase unit size.
Leaking valves in compressor. Replace compressor. Recover refrigerant, evacuate system, and recharge. Condenser coil dirty or restricted. Clean coil or remove restriction. Dirty air filter. Dirty condenser coil. Refrigerant overcharged. Recover excess refrigerant. Recover refrigerant. Recover excess refrigerant. Air in system. Condenser air restricted or air short-cycling. Determine cause and correct.		Thermostat set too low.	Reset thermostat.
Leaking valves in compressor. Air in system. Condenser coil dirty or restricted. Dirty air filter. Dirty condenser coil. Refrigerant overcharged. Recover refrigerant, evacuate system, and recharge. Clean coil or remove restriction. Replace filter. Dirty condenser coil. Refrigerant overcharged. Recover excess refrigerant. Air in system. Condenser air restricted or air short-cycling. Determine cause and correct.	Compressor Operates Continuously	Low refrigerant charge.	Locate leak, repair, and recharge.
Condenser coil dirty or restricted. Dirty air filter. Dirty condenser coil. Refrigerant overcharged. Recover excess refrigerant. Air in system. Condenser air restricted or air short-cycling. Charge. Clean coil or remove restriction. Clean coil. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Condenser air restricted or air short-cycling.	compressor operates commusuory.	Leaking valves in compressor.	Replace compressor.
Dirty air filter. Dirty condenser coil. Refrigerant overcharged. Air in system. Condenser air restricted or air short-cycling. Dirty air filter. Replace filter. Clean coil. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Determine cause and correct.		Air in system.	
Dirty condenser coil. Refrigerant overcharged. Air in system. Clean coil. Recover excess refrigerant. Recover refrigerant, evacuate system, and recharge. Condenser air restricted or air short-cycling. Determine cause and correct.		Condenser coil dirty or restricted.	Clean coil or remove restriction.
Refrigerant overcharged. Recover excess refrigerant. Air in system. Recover refrigerant, evacuate system, and recharge. Condenser air restricted or air short-cycling. Determine cause and correct.		Dirty air filter.	Replace filter.
Air in system. Air in system. Condenser air restricted or air short-cycling. Recover refrigerant, evacuate system, and recharge. Determine cause and correct.		Dirty condenser coil.	Clean coil.
Air in system. Condenser air restricted or air short-cycling. Determine cause and correct.		Refrigerant overcharged.	Recover excess refrigerant.
ing.	Excessive Head Pressure.	Air in system.	ala a a a a a a a a a a a a a a a a a a
Low refrigerant charge. Check for leaks, repair, and recharge.			Determine cause and correct.
		Low refrigerant charge.	Check for leaks, repair, and recharge.
Head Pressure Too Low. Compressor valves leaking. Replace compressor.	Head Pressure Too Low.	1	Replace compressor.
Restriction in liquid tube. Remove restriction.		Restriction in liquid tube.	Remove restriction.
High heat load. Check for source and eliminate.		High heat load.	Check for source and eliminate.
Excessive Suction Pressure. Compressor valves leaking. Replace compressor.	Excessive Suction Pressure.	Compressor valves leaking.	Replace compressor.
Refrigerant overcharged. Recover excess refrigerant.		Refrigerant overcharged.	Recover excess refrigerant.
Dirty air filter. Replace filter.		Dirty air filter.	·
Low refrigerant charge. Check for leaks, repair, and recharge.			Check for leaks, repair, and recharge.
Metering device or low side restricted. Remove source of restriction.		Metering device or low side restricted.	
Suction Pressure Too Low. Insufficient evaporator airflow. Increase air quantity. Check filter and replace if necessary.	Suction Pressure Too Low.	·	
Temperature too low in conditioned area. Reset thermostat.	ompressor Cycles (Other Than Nor- hally Satisfying Thermostat). ompressor Operates Continuously. ead Pressure Too Low. ead Pressure Too Low. uction Pressure Too Low.	Temperature too low in conditioned area.	Reset thermostat.
Outdoor ambient below 25 F. Install low-ambient kit.		Outdoor ambient below 25 F.	Install low-ambient kit.
Evaporator Fan Will Not Shut Off.Time off delay not finished.Wait for 30-second off delay.	Evaporator Fan Will Not Shut Off.	Time off delay not finished.	Wait for 30-second off delay.

Table 43 — Heating Service Analysis

PROBLEM	CAUSE	REMEDY				
Burners Will Not	Misaligned spark electrodes.	Check flame ignition and sensor electrode positioning. Adjust as needed.				
Ignite.	No gas at main burners.	Check gas line for air purge as necessary. After purging gas line of air, allow gas to dissipate for at least 5 minutes before attempting to relight unit.				
		Check gas valve.				
	Water in gas line.	Drain water and install drip leg to trap water.				
	No power to furnace.	Check power supply, fuses, wiring, and circuit breaker.				
	No 24 v power supply to control circuit.	Check transformer. Transformers with internal overcurrent protection require a cool-down period before resetting. Check 24-v circuit breaker; reset if necessary.				
	Miswired or loose connections.	Check all wiring and wirenut connections.				
	Burned-out heat anticipator in thermostat.	Replace thermostat.				
	Broken thermostat wires.	Run continuity check. Replace wires, if necessary.				
Inadequate Heating.	Dirty air filter.	Clean or replace filter as necessary.				
	Gas input to unit too low.	Check gas pressure at manifold. Clock gas meter for input. If too low, increase manifold pressure or replace with correct orifices.				
	Unit undersized for application.	Replace with proper unit or add additional unit.				
	Restricted airflow.	Clean filter, replace filter, or remove any restrictions.				
	Blower speed too low.	Use high speed tap, increase fan speed, or install optional blower, as suitable for individual units, Adjust pulley.				
	Limit switch cycles main burners.	Check rotation of blower, thermostat heat anticipator settings, and temperarise of unit. Adjust as needed.				
	Too much outdoor air.	Adjust minimum position.				
		Check economizer operation.				
Poor Flame Characteristics.	Incomplete combustion (lack of combustion air) results in:	Check all screws around flue outlets and burner compartment. Tighten as necessary.				
	Aldehyde odors, CO (carbon monox- ide),	Cracked heat exchanger. Replace heat exchanger.				
	sooting flame, or floating flame.	Overfired unit — reduce input, change orifices, or adjust gas line or manifold pressure.				
		Check vent for restriction. Clean as necessary.				
		Check orifice to burner alignment.				
Burners Will Not Turn Off.	Unit is locked into Heating mode for a one minute minimum.	Wait until mandatory one-minute time period has elapsed or reset power to unit.				

Table 44 — IGC Board LED Alarm Codes

LED FLASH CODE	DESCRIPTION	ACTION TAKEN BY CONTROL	RESET METHOD	PROBABLE CAUSE
On	Normal Operation	_	_	-
Off	Hardware Failure	No gas heating.	_	Loss of power to the IGC. Check 5 amp fuse on IGC, power to unit, 24V circuit breaker, transformer, and wiring to the IGC.
1 Flash	Indoor Fan On/Off Delay Modified	5 seconds subtracted from On delay. 5 seconds added to Off delay (3 min max).	Power reset.	High temperature limit switch opens during heat exchanger warm-up period before fan-on delay expires. High temperature limit switch opens within 10 minutes of heat call (W) Off. See Limit Switch Fault.
2 Flashes	Limit Switch Fault	Gas valve and igniter Off. Indoor fan and inducer On.	Limit switch closed, or heat call (W) Off.	High temperature limit switch is open. Check the operation of the indoor (evaporator) fan motor. Ensure that the supply-air temperature rise is within the range on the unit nameplate. Check wiring and limit switch operation.
3 Flashes	Flame Sense Fault	Indoor fan and inducer On.	Flame sense normal. Power reset for LED reset.	The IGC sensed a flame when the gas valve should be closed. Check wiring, flame sensor, and gas valve operation.
4 Flashes	Four Consecutive Limit Switch Fault	No gas heating.	Heat call (W) Off. Power reset for LED reset.	4 consecutive limit switch faults within a single call for heat. See Limit Switch Fault.
5 Flashes	Ignition Fault	No gas heating.	Heat call (W) Off. Power reset for LED re- set.	Unit unsuccessfully attempted ignition for 15 minutes. Check igniter and flame sensor electrode spacing, gaps, etc. Check flame sense and igniter wiring. Check gas valve operation and gas supply.
6 Flashes	Induced Draft Motor Fault	If heat off: no gas heat- ing. If heat on: gas valve Off and inducer On.	Inducer sense normal, or heat call (W) Off.	Inducer sense On when heat call Off, or inducer sense Off when heat call On. Check wiring, voltage, and operation of IGC motor. Check speed sensor wiring to IGC.
7 Flashes	Rollout Switch Lockout	Gas valve and igniter Off. Indoor fan and inducer On.	Power reset.	Rollout switch has opened. Check gas valve operation. Check induced-draft blower wheel is properly secured to motor shaft.
8 Flashes	Internal Control Lockout	No gas heating.	Power reset.	IGC has sensed internal hardware or software error. If fault is not cleared by resetting 24 v power, replace the IGC.
9 Flashes	Temporary Software Lock- out	No gas heating.	1 hour auto reset, or power reset.	Electrical interference is disrupting the IGC software.

IGC — Integrated Gas Unit LED — Light-Emitting Diode

- 1. There is a 3-second pause between alarm code displays.
- 2. If more than one alarm code exists, all applicable alarm codes will be displayed in numerical sequence.
- 3. Alarm codes on the IGC will be lost if power to the unit is interrupted.

EconoMi\$er IV Troubleshooting

Economi\$er IV Preparation

NOTE: This procedure requires a 9-v battery, 1.2 kilo-ohm resistor, and a 5.6 kilo-ohm resistor which are not supplied with the EconoMi\$er IV.

IMPORTANT: Be sure to record the positions of all potentiometers before starting troubleshooting.

- Disconnect power at TR and TR1. All LEDs should be off. Exhaust fan contacts should be open.
- 2. Disconnect device at P and P1.
- 3. Jumper P to P1.
- 4. Disconnect wires at T and T1. Place 5.6 kilo-ohm resistor across T and T1.
- 5. Jumper TR to 1.
- 6. Jumper TR to N.
- 7. If connected, remove sensor from terminals S_O and +. Connect 1.2 kilo-ohm 4074EJM checkout resistor across terminals S_O and +.
- 8. Put 620-ohm resistor across terminals S_R and +.
- 9. Set minimum position, DCV set point, and exhaust potentiometers fully CCW (counterclockwise).
- Set DCV maximum position potentiometer fully CW (clockwise).
- 11. Set enthalpy potentiometer to D.
- 12. Apply power (24 vac) to terminals TR and TR1.

Differential Enthalpy

To check differential enthalpy:

- Make sure EconoMi\$er IV preparation procedure has been performed.
- 2. Place 620-ohm resistor across S_O and +.
- 3. Place 1.2 kilo-ohm resistor across S_R and +. The Free Cool LED should be lit.
- 4. Remove 620-ohm resistor across S_{O} and +. The Free Cool LED should turn off.
- 5. Return EconoMi\$er IV settings and wiring to normal after completing troubleshooting.

Single Enthalpy

To check single enthalpy:

- Make sure EconoMi\$er IV preparation procedure has been performed.
- 2. Set the enthalpy potentiometer to A (fully CCW). The Free Cool LED should be lit.
- 3. Set the enthalpy potentiometer to D (fully CW). The Free Cool LED should turn off.
- Return EconoMi\$er IV settings and wiring to normal after completing troubleshooting.

DCV (Demand Controlled Ventilation) and Power Exhause

To check DCV and Power Exhaust:

- Make sure EconoMi\$er IV preparation procedure has been performed.
- Ensure terminals AQ and AQ1 are open. The LED for both DCV and Exhaust should be off. The actuator should be fully closed.
- 3. Connect a 9-v battery to AQ (positive node) and AQ1 (negative node). The LED for both DCV and Exhaust should turn on. The actuator should drive to between 90 and 95% open.
- 4. Turn the Exhaust potentiometer CW until the Exhaust LED turns off. The LED should turn off when the potentiometer is approximately 90%. The actuator should remain in position.

- Turn the DCV set point potentiometer CW until the DCV LED turns off. The DCV LED should turn off when the potentiometer is approximately 9 v. The actuator should drive fully closed.
- Turn the DCV and Exhaust potentiometers CCW until the Exhaust LED turns on. The exhaust contacts will close 30 to 120 seconds after the Exhaust LED turns on.
- 7. Return EconoMi\$er IV settings and wiring to normal after completing troubleshooting.

DCV Minimum and Maximum Position

To check the DCV minimum and maximum position:

- Make sure EconoMi\$er IV preparation procedure has been performed.
- Connect a 9-v battery to AQ (positive node) and AQ1 (negative node). The DCV LED should turn on. The actuator should drive to between 90 and 95% open.
- 3. Turn the DCV Maximum Position potentiometer to midpoint. The actuator should drive to between 20 and 80% open.
- Turn the DCV Maximum Position potentiometer to fully CCW. The actuator should drive fully closed.
- 5. Turn the Minimum Position potentiometer to midpoint. The actuator should drive to between 20 and 80% open.
- Turn the Minimum Position Potentiometer fully CW. The actuator should drive fully open.
- Remove the jumper from TR and N. The actuator should drive fully closed.
- 8. Return EconoMi\$er IV settings and wiring to normal after completing troubleshooting.

Mixed-Air Input

To check mixed-air input:

- Make sure EconoMi\$er IV preparation procedure has been performed.
- 2. Set the Enthalpy potentiometer to A. The Free Cool LED turns on. The actuator should drive to between 20 and 80% open.
- 3. Remove the 5.6 kilo-ohm resistor and jumper T to T1. The actuator should drive fully open.
- 4. Remove the jumper across T and T1. The actuator should drive fully closed.
- Return EconoMi\$er IV settings and wiring to normal after completing troubleshooting.

Economi\$er IV Troubleshooting Completion

This procedure is used to return the EconoMi\$er IV to operation. No troubleshooting or testing is done by performing the following procedure.

- 1. Disconnect power at TR and TR1.
- 2. Set enthalpy potentiometer to previous setting.
- Set DCV maximum position potentiometer to previous setting.
- Set minimum position, DCV set point, and exhaust potentiometers to previous settings.
- 5. Remove 620-ohm resistor from terminals S_R and +.
- 6. Remove 1.2 kilo-ohm checkout resistor from terminals S_O and +. If used, reconnect sensor from terminals S_O and +.
- 7. Remove jumper from TR to N.
- 8. Remove jumper from TR to 1.
- 9. Remove 5.6 kilo-ohm resistor from T and T1. Reconnect wires at T and T1.
- 10. Remove jumper from P to P1. Reconnect device at P and P1.
- 11. Apply power (24 vac) to terminals TR and TR1.

Phase Loss Protection

The phase loss protection option will monitor the three-phase electrical system to provide phase reversal and phase loss protection.

Phase Reversal Protection

If the control senses an incorrect phase relationship, the relay (K1) will be de-energized (opening its contact). If the phase relationship is correct, the relay will be energized. The control has a self-bypass function after a pre-set time. If the control determines that the three phases stay in a correct relationship for 10 consecutive minutes, the relay will stay energized regardless of the phase sequence of three inputs as long as 24-vac control voltage is applied. This self-bypass function will be reset if all three phases are restored in a phase loss event.

Phase Loss Protection

If the reverse rotation board senses any one of the three phase inputs has no AC voltage, the relay will be deenergized (opening its contact). This protection is always active as long as 24-vac control voltage is applied, and is not affected by the self bypass function of the phase sequence monitoring function. However, in the event of phase loss, the relay will be re-energized only if all three phases are restored and the three phases are in the correct sequence.

A red LED is provided to indicate the function of the board. See the table below.

LED STATUS	FUNCTION			
On Continuously	Relay contact closed (normal operation).			
Blinking	Relay contact open (phase loss or phase reversal has occurred) – No power will be supplied to the control system.			
Off	24 vac control power not present (off).			

UNIT START-UP CHECKLIST

MC	DEL NO.:			SERIAL	NO.:				
DA	ГЕ:		TECHNI	CIAN:					
I.	PRE-START-UP:								
	☐ VERIFY THAT ALL PACE	KING MATERIALS HA	AVE BEE	N REMOVED I	FROM U	JNIT			
	☐ VERIFY INSTALLATION	OF OUTDOOR AIR H	IOOD						
	☐ VERIFY INSTALLATION	OF FLUE EXHAUST	AND INL	ET HOOD					
	☐ VERIFY THAT CONDENS	SATE CONNECTION I	IS INSTA	LLED PER INS	STRUCT	TIONS			
	☐ VERIFY THAT ALL ELEC	CTRICAL CONNECTION	ONS AND	TERMINALS	S ARE T	IGHT			
	☐ VERIFY GAS PRESSURE	TO UNIT GAS VALV	E IS WIT	HIN SPECIFIE	D RANG	GE			
	☐ CHECK GAS PIPING FOR	LEAKS							
	☐ CHECK THAT INDOOR-A	AIR FILTERS ARE CL	EAN ANI	IN PLACE					
	\square CHECK THAT OUTDOOR	AIR INLET SCREEN	IS ARE IN	I PLACE					
	☐ VERIFY THAT UNIT IS L	EVEL							
	☐ CHECK FAN WHEEL AN	D PROPELLER FOR I	LOCATIO	N IN HOUSIN	G/ORIF	ICE, AND VE	ERIFY S	ETSCRE	EW IS TIGH
	☐ VERIFY THAT FAN SHEA	AVES ARE ALIGNED	AND BEI	LTS ARE PRO	PERLY '	ΓENSIONED			
	☐ VERIFY THAT SCROLL (COMPRESSORS ARE	ROTATIN	IG IN THE CO	RRECT	DIRECTION			
	☐ VERIFY INSTALLATION	OF THERMOSTAT							
	☐ VERIFY THAT CRANKCA	ASE HEATERS HAVE	BEEN EN	NERGIZED FO	R AT LI	EAST 24 HO	JRS		
II.	START-UP								
	ELECTRICAL								
	SUPPLY VOLTAGE L1	1-L2	L2-L3		L3-L1		-		
	COMPRESSOR AMPS — C	OMPRESSOR A1	L1		L2		L3		
		OMPRESSOR B1	L1		L2				
		OMPRESSOR C1 (16)					-		
	SUPPLY FAN AMPS	()	L1		L2				
	TEMPERATURES						•		
		· · · · · · · · · · · · · · · · · · ·	EDD (F						
	OUTDOOR-AIR TEMPERATURN-AIR TEMPERATU		`	Ory Bulb)	11 D 41				
				F	MB (M	et Bulb)			
	COOLING SUPPLY AIR		F						
	GAS HEAT SUPPLY AIR		F						
	PRESSURES								
	GAS INLET PRESSURE			IN. WG					
	GAS MANIFOLD PRESSURE	STAGE NO. 1		IN. WG		STAGE NO.	. 2		IN. WG
	REFRIGERANT SUCTION	CIRCUIT A		PSIG					
		CIRCUIT B		PSIG					
		CIRCUIT C (16)		PSIG					
	REFRIGERANTDISCHARGE	CIRCUIT A		PSIG					
		CIRCUIT B		PSIG					
		CIRCUIT C (16)		PSIG					
	☐ VERIFY REFRIGERANT	CHARGE USING CHA	ARGING	CHARTS					
	GENERAL								
	☐ ECONOMIZER MINIMUM	VENT AND CHANC	SEOVER 9	SETTINGS TO	IOR RE	FOLUREMEN	2T		